The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kim O.T.

National Medical Research Center for Therapy and Preventive Medicine

Dadaeva V.A.

National Medical Research Center for Therapy and Preventive Medicine;
Peoples’ Friendship University of Russia named after Patrice Lumumba

Drapkina O.M.

National Medical Research Center for Therapy and Preventive Medicine;
A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Origins of obesity

Authors:

Kim O.T., Dadaeva V.A., Drapkina O.M.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2022;25(8): 105‑113

Read: 2269 times


To cite this article:

Kim OT, Dadaeva VA, Drapkina OM. Origins of obesity. Russian Journal of Preventive Medicine. 2022;25(8):105‑113. (In Russ.)
https://doi.org/10.17116/profmed202225081105

Recommended articles:
Features of como­rbidity pathology in young people. Russian Journal of Preventive Medi­cine. 2024;(11):63-69
Study of opinions of medi­cal students on medi­cal prevention issues. Russian Journal of Preventive Medi­cine. 2024;(12):69-74
Gastric cancer: inci­dence, risk factors, screening. Russian Journal of Preventive Medi­cine. 2024;(12):135-139
Modern view on the etiology of gallstone disease in children. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):59-68
Application of modern methods for acti­vation of brain functions in obese patients (literature review). Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6):54-61
The rela­tionship of diet and nutrition with the frequency of migraine atta­cks. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):30-35

References:

  1. Global Burden of Disease Study 2015. Global Burden of Disease Study 2015 (GBD 2015) Obesity and Overweight Prevalence 1980—2015 Institute for Health Metrics and Evaluation (IHME). Seattle, United States; 2017.
  2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627-2642. https://doi.org/10.1016/S0140-6736(17)32129-3
  3. Ouni M, Schürmann A. Epigenetic contribution to obesity. Mammalian Genome. 2020;31(5-6):134-145.  https://doi.org/10.1007/s00335-020-09835-3
  4. Fall CHD, Kumaran K. Metabolic programming in early life in humans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2019;374(1770):20180123. https://doi.org/10.1098/rstb.2018.0123
  5. Gillman MW, Barker D, Bier D, Cagampang F, Challis J, Fall C, Godfrey K, Gluckman P, Hanson M, Kuh D, Nathanielsz P, Nestel P, Thornburg KL. Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD). Pediatric Research. 2007;61(5 Pt 1):625-629.  https://doi.org/10.1203/pdr.0b013e3180459fcd
  6. Kermack WO, McKendrick AG, Mckinlay PL. Death-rates in Great Britain and Sweden some general regularities and their significance. The Lancet. 1934;223(5770):698-703.  https://doi.org/10.1016/s0140-6736(00)92530-3
  7. Gluckman PD, Hanson MA, Buklijas T. A conceptual framework for the developmental origins of health and disease. Journal of Developmental Origins of Health and Disease. 2010;1(1):6-18.  https://doi.org/10.1017/S2040174409990171
  8. Freinkel N. Banting Lecture 1980. Of pregnancy and progeny. Diabetes. 1980;29(12):1023-1035. https://doi.org/10.2337/diab.29.12.1023
  9. Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? British Journal of Preventive and Social Medicine. 1977;31(2):91-95.  https://doi.org/10.1136/jech.31.2.91
  10. Wadsworth ME, Cripps HA, Midwinter RE, Colley JR. Blood pressure in a national birth cohort at the age of 36 related to social and familial factors, smoking, and body mass. British Medical Journal. 1985;291(6508):1534-1538. https://doi.org/10.1136/bmj.291.6508.1534
  11. Notkola V, Punsar S, Karvonen MJ, Haapakoski J. Socio-economic conditions in childhood and mortality and morbidity caused by coronary heart disease in adulthood in rural Finland. Social Science and Medicine. 1985; 21(5):517-523.  https://doi.org/10.1016/0277-9536(85)90035-8
  12. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077-1081. https://doi.org/10.1016/s0140-6736(86)91340-1
  13. Barker DJ. The origins of the developmental origins theory. Journal of Internal Medicine. 2007;261(5):412-417.  https://doi.org/10.1111/j.1365-2796.2007.01809.x
  14. Li X, Zhang M, Pan X, Xu Z, Sun M. «Three Hits» Hypothesis for Developmental Origins of Health and Diseases in View of Cardiovascular Abnormalities. Birth Defects Research. 2017;109(10):744-757.  https://doi.org/10.1002/bdr2.1037
  15. Haugen AC, Schug TT, Collman G, Heindel JJ. Evolution of DOHaD: the impact of environmental health sciences. Journal of Developmental Origins of Health and Disease. 2015;6(2):55-64.  https://doi.org/10.1017/S2040174414000580
  16. Leary C, Leese HJ, Sturmey RG. Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Human Reproduction. 2015;30(1):122-132.  https://doi.org/10.1093/humrep/deu276
  17. Bearak J, Popinchalk A, Alkema L, Sedgh G. Global, regional, and subregional trends in unintended pregnancy and its outcomes from 1990 to 2014: estimates from a Bayesian hierarchical model. The Lancet. Global Health. 2018;6(4):380-389.  https://doi.org/10.1016/S2214-109X(18)30029-9
  18. Huang JS, Lee TA, Lu MC. Prenatal programming of childhood overweight and obesity. Maternal and Child Health Journal. 2007;11(5):461-473.  https://doi.org/10.1007/s10995-006-0141-8
  19. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R; Maternal and Child Nutrition Study Group. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890): 427-451.  https://doi.org/10.1016/S0140-6736(13)60937-X
  20. Heslehurst N, Vieira R, Akhter Z, Bailey H, Slack E, Ngongalah L, Pemu A, Rankin J. The association between maternal body mass index and child obesity: A systematic review and meta-analysis. PLoS Medicine. 2019;16(6): e1002817. https://doi.org/10.1371/journal.pmed.1002817
  21. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):290-296.  https://doi.org/10.1542/peds.2004-1808
  22. Sebire NJ, Jolly M, Harris JP, Wadsworth J, Joffe M, Beard RW, Regan L, Robinson S. Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. International Journal of Obesity and Related Metabolic Disorders. 2001;25(8):1175-1182. https://doi.org/10.1038/sj.ijo.0801670
  23. Josey MJ, McCullough LE, Hoyo C, Williams-DeVane C. Overall gestational weight gain mediates the relationship between maternal and child obesity. BMC Public Health. 2019;19(1):1062. https://doi.org/10.1186/s12889-019-7349-1
  24. Hull HR, Dinger MK, Knehans AW, Thompson DM, Fields DA. Impact of maternal body mass index on neonate birthweight and body composition. American Journal of Obstetrics and Gynecology. 2008;198(4):416.e1-6.  https://doi.org/10.1016/j.ajog.2007.10.796
  25. Hillier TA, Pedula KL, Vesco KK, Schmidt MM, Mullen JA, LeBlanc ES, Pettitt DJ. Excess gestational weight gain: modifying fetal macrosomia risk associated with maternal glucose. Obstetrics and Gynecology. 2008;112(5): 1007-1014. https://doi.org/10.1097/AOG.0b013e31818a9779
  26. Sparano S, Ahrens W, De Henauw S, Marild S, Molnar D, Moreno LA, Suling M, Tornaritis M, Veidebaum T, Siani A, Russo P. Being macrosomic at birth is an independent predictor of overweight in children: results from the IDEFICS study. Maternal and Child Health Journal. 2013;17(8):1373-1381. https://doi.org/10.1007/s10995-012-1136-2
  27. Wang Y, Gao E, Wu J, Zhou J, Yang Q, Walker MC, Mbikay M, Sigal RJ, Nair RC, Wen SW. Fetal macrosomia and adolescence obesity: results from a longitudinal cohort study. International Journal of Obesity. 2009;33(8):923-928.  https://doi.org/10.1038/ijo.2009.131
  28. Strohmaier S, Bogl LH, Eliassen AH, Massa J, Field AE, Chavarro JE, Ding M, Tamimi RM, Schernhammer E. Maternal healthful dietary patterns during peripregnancy and long-term overweight risk in their offspring. European Journal of Epidemiology. 2020;35(3):283-293.  https://doi.org/10.1007/s10654-020-00621-8
  29. Smith J, Cianflone K, Biron S, Hould FS, Lebel S, Marceau S, Lescelleur O, Biertho L, Simard S, Kral JG, Marceau P. Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. The Journal of Clinical Endocrinology and Metabolism. 2009;94(11):4275-4283. https://doi.org/10.1210/jc.2009-0709
  30. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. The New England Journal of Medicine. 1976; 295(7):349-353.  https://doi.org/10.1056/NEJM197608122950701
  31. Stein AD, Ravelli AC, Lumey LH. Famine, third-trimester pregnancy weight gain, and intrauterine growth: the Dutch Famine Birth Cohort Study. Human Biology. 1995;67(1):135-150. 
  32. Song C, Wang M, Chen Z, Yao Y, Feng G, Ma Y, Fan J, Liu A. Fetal Exposure to Chinese Famine Increases Obesity Risk in Adulthood. International Journal of Environmental Research and Public Health. 2020;17(10):3649. https://doi.org/10.3390/ijerph17103649
  33. Arage G, Belachew T, Hassen H, Abera M, Abdulhay F, Abdulahi M, Hassen Abate K. Effects of prenatal exposure to the 1983-1985 Ethiopian great famine on the metabolic syndrome in adults: a historical cohort study. The British Journal of Nutrition. 2020;124(10):1052-1060. https://doi.org/10.1017/S0007114520002123
  34. Keinan-Boker L, Shasha-Lavsky H, Eilat-Zanani S, Edri-Shur A, Shasha SM. Chronic health conditions in Jewish Holocaust survivors born during World War II. The Israel Medical Association Journal: IMAJ. 2015;17(4):206-212. 
  35. McKerracher L, Fried R, Kim AW, Moffat T, Sloboda DM, Galloway T. Synergies between the Developmental Origins of Health and Disease framework and multiple branches of evolutionary anthropology. Evolutionary Anthropology. 2020;29(5):214-219.  https://doi.org/10.1002/evan.21860
  36. Wells JC. The evolution of human adiposity and obesity: where did it all go wrong? Disease Models and Mechanisms. 2012;5(5):595-607.  https://doi.org/10.1242/dmm.009613
  37. Bateson P, Gluckman P, Hanson M. The biology of developmental plasticity and the Predictive Adaptive Response hypothesis. The Journal of Physiology. 2014;592(11):2357-2368. https://doi.org/10.1113/jphysiol.2014.271460
  38. Lea AJ, Tung J, Archie EA, Alberts SC. Developmental plasticity: Bridging research in evolution and human health. Evolution, Medicine, and Public Health. 2018;2017(1):162-175.  https://doi.org/10.1093/emph/eox019
  39. Sparén P, Vågerö D, Shestov DB, Plavinskaja S, Parfenova N, Hoptiar V, Paturot D, Galanti MR. Long term mortality after severe starvation during the siege of Leningrad: prospective cohort study. BMJ. 2004;328(7430):11.  https://doi.org/10.1136/bmj.37942.603970.9A
  40. Lumey LH, Stein AD, Kahn HS, van der Pal-de Bruin KM, Blauw GJ, Zybert PA, Susser ES. Cohort profile: the Dutch Hunger Winter families study. International Journal of Epidemiology. 2007;36(6):1196-1204. https://doi.org/10.1093/ije/dym126
  41. Schulz LO, Bennett PH, Ravussin E, Kidd JR, Kidd KK, Esparza J, Valencia ME. Effects of traditional and western environments on prevalence of type 2 diabetes in Pima Indians in Mexico and the U.S. Diabetes Care. 2006;29(8):1866-1871. https://doi.org/10.2337/dc06-0138
  42. Hardikar AA, Satoor SN, Karandikar MS, Joglekar MV, Puranik AS, Wong W, Kumar S, Limaye A, Bhat DS, Januszewski AS, Umrani MR, Ranjan AK, Apte K, Yajnik P, Bhonde RR, Galande S, Keech AC, Jenkins AJ, Yajnik CS. Multigenerational Undernutrition Increases Susceptibility to Obesity and Diabetes that Is Not Reversed after Dietary Recuperation. Cell Metabolism. 2015;22(2):312-319.  https://doi.org/10.1016/j.cmet.2015.06.008
  43. Oestreich AK, Moley KH. Developmental and Transmittable Origins of Obesity-Associated Health Disorders. Trends in Genetics: TIG. 2017;33(6):399-407.  https://doi.org/10.1016/j.tig.2017.03.008
  44. Chen YP, Xiao XM, Li J, Reichetzeder C, Wang ZN, Hocher B. Paternal body mass index (BMI) is associated with offspring intrauterine growth in a gender dependent manner. PLoS One. 2012;7(5):e36329. https://doi.org/10.1371/journal.pone.0036329
  45. Freeman E, Fletcher R, Collins CE, Morgan PJ, Burrows T, Callister R. Preventing and treating childhood obesity: time to target fathers. International Journal of Obesity. 2012;36(1):12-15.  https://doi.org/10.1038/ijo.2011.198
  46. Vickers MH. Developmental programming and transgenerational transmission of obesity. Annals of Nutrition and Metabolism. 2014;64(suppl 1):26-34.  https://doi.org/10.1159/000360506
  47. Dolinoy DC. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutrition Reviews. 2008;66(suppl 1):7-11.  https://doi.org/10.1111/j.1753-4887.2008.00056.x
  48. Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M, Ziska T, Schellong K, Rodekamp E, Melchior K, Dudenhausen JW. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. The Journal of Physiology. 2009;587(Pt 20):4963-4976. https://doi.org/10.1113/jphysiol.2009.176156
  49. Kühnen P, Handke D, Waterland RA, Hennig BJ, Silver M, Fulford AJ, Dominguez-Salas P, Moore SE, Prentice AM, Spranger J, Hinney A, Hebebrand J, Heppner FL, Walzer L, Grötzinger C, Gromoll J, Wiegand S, Grüters A, Krude H. Interindividual Variation in DNA Methylation at a Putative POMC Metastable Epiallele Is Associated with Obesity. Cell Metabolism. 2016;24(3):502-509.  https://doi.org/10.1016/j.cmet.2016.08.001
  50. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(44):17046-17049. https://doi.org/10.1073/pnas.0806560105
  51. Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair KD. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Human Reproduction Update. 2013;19(6): 640-655.  https://doi.org/10.1093/humupd/dmt041
  52. He J, Zhang A, Fang M, Fang R, Ge J, Jiang Y, Zhang H, Han C, Ye X, Yu D, Huang H, Liu Y, Dong M. Methylation levels at IGF2 and GNAS DMRs in infants born to preeclamptic pregnancies. BMC Genomics. 2013;14:472.  https://doi.org/10.1186/1471-2164-14-472
  53. Salas-Huetos A, James ER, Broberg DS, Aston KI, Carrell DT, Jenkins TG. The combined effect of obesity and aging on human sperm DNA methylation signatures: inclusion of BMI in the paternal germ line age prediction model. Scientific Reports. 2020;10(1):15409. https://doi.org/10.1038/s41598-020-71979-8
  54. Grandjean V, Fourré S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Scientific Reports. 2015;5:18193. https://doi.org/10.1038/srep18193
  55. Philips EM, Santos S, Trasande L, Aurrekoetxea JJ, Barros H, von Berg A, Bergström A, Bird PK, Brescianini S, Ní Chaoimh C, Charles MA, Chatzi L, Chevrier C, Chrousos GP, Costet N, Criswell R, Crozier S, Eggesbø M, Fantini MP, Farchi S, Forastiere F, van Gelder MMHJ, Georgiu V, Godfrey KM, Gori D, Hanke W, Heude B, Hryhorczuk D, Iñiguez C, Inskip H, Karvonen AM, Kenny LC, Kull I, Lawlor DA, Lehmann I, Magnus P, Manios Y, Melén E, Mommers M, Morgen CS, Moschonis G, Murray D, Nohr EA, Nybo Andersen AM, Oken E, Oostvogels AJJM, Papadopoulou E, Pekkanen J, Pizzi C, Polanska K, Porta D, Richiardi L, Rifas-Shiman SL, Roeleveld N, Rusconi F, Santos AC, Sørensen TIA, Standl M, Stoltenberg C, Sunyer J, Thiering E, Thijs C, Torrent M, Vrijkotte TGM, Wright J, Zvinchuk O, Gaillard R, Jaddoe VWV. Changes in parental smoking during pregnancy and risks of adverse birth outcomes and childhood overweight in Europe and North America: An individual participant data meta-analysis of 229,000 singleton births. PLoS Medicine. 2020;17(8):e1003182. https://doi.org/10.1371/journal.pmed.1003182
  56. Mejia-Lancheros C, Mehegan J, Murrin CM, Kelleher CC; Lifeways Cross-Generation Cohort Study Group. Smoking habit from the paternal line and grand-child’s overweight or obesity status in early childhood: prospective findings from the lifeways cross-generation cohort study. International Journal of Obesity. 2018;42(11):1853-1870. https://doi.org/10.1038/s41366-018-0039-8
  57. Lisboa PC, de Oliveira E, de Moura EG. Obesity and endocrine dysfunction programmed by maternal smoking in pregnancy and lactation. Frontiers in Physiology. 2012;3:437.  https://doi.org/10.3389/fphys.2012.00437
  58. Kim KY, Lee E, Kim Y. The Association between Bisphenol A Exposure and Obesity in Children-A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health. 2019;16(14):2521. https://doi.org/10.3390/ijerph16142521
  59. Holtcamp W. Obesogens: an environmental link to obesity. Environmental Health Perspectives. 2012;120(2):a62-68.  https://doi.org/10.1289/ehp.120-a62
  60. Gupta R, Kumar P, Fahmi N, Garg B, Dutta S, Sachar S, Matharu AS, Vimaleswaran KS. Endocrine disruption and obesity: A current review on environmental obesogens. Current Research in Green and Sustainable Chemistry. 2020;3:100009. https://doi.org/10.1016/j.crgsc.2020.06.002
  61. Lee MK, Blumberg B. Transgenerational effects of obesogens. Basic and Clinical Pharmacology and Toxicology. 2019;125(suppl 3):44-57.  https://doi.org/10.1111/bcpt.13214
  62. Bianco-Miotto T, Craig JM, Gasser YP, van Dijk SJ, Ozanne SE. Epigenetics and DOHaD: from basics to birth and beyond. Journal of Developmental Origins of Health and Disease. 2017;8(5):513-519.  https://doi.org/10.1017/S2040174417000733
  63. Barres R, van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS; Members of EpiSCOPE. Epigenetics and human obesity. International Journal of Obesity. 2015;39(1):85-97.  https://doi.org/10.1038/ijo.2014.34
  64. Leppert B, Junge KM, Röder S, Borte M, Stangl GI, Wright RJ, Hilbert A, Lehmann I, Trump S. Early maternal perceived stress and children’s BMI: longitudinal impact and influencing factors. BMC Public Health. 2018; 18(1):1211. https://doi.org/10.1186/s12889-018-6110-5
  65. Entringer S, Buss C, Rasmussen JM, Lindsay K, Gillen DL, Cooper DM, Wadhwa PD. Maternal Cortisol During Pregnancy and Infant Adiposity: A Prospective Investigation. The Journal of Clinical Endocrinology and Metabolism. 2017;102(4):1366-1374. https://doi.org/10.1210/jc.2016-3025
  66. Dalziel SR, Walker NK, Parag V, Mantell C, Rea HH, Rodgers A, Harding JE. Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet. 2005;365(9474): 1856-1862. https://doi.org/10.1016/S0140-6736(05)66617-2
  67. Yau YH, Potenza MN. Stress and eating behaviors. Minerva Endocrinologica. 2013;38(3):255-267. 
  68. Mennella JA, Jagnow CP, Beauchamp GK. Prenatal and postnatal flavor learning by human infants. Pediatrics. 2001;107(6):E88.  https://doi.org/10.1542/peds.107.6.e88
  69. Rutayisire E, Wu X, Huang K, Tao S, Chen Y, Tao F. Cesarean section may increase the risk of both overweight and obesity in preschool children. BMC Pregnancy Childbirth. 2016;16(1):338.  https://doi.org/10.1186/s12884-016-1131-5
  70. Yuan C, Gaskins AJ, Blaine AI, Zhang C, Gillman MW, Missmer SA, Field AE, Chavarro JE. Association between Cesarean Birth and Risk of Obesity in Offspring in Childhood, Adolescence, and Early Adulthood. JAMA Pediatrics. 2016;170(11):e162385. https://doi.org/10.1001/jamapediatrics.2016.2385
  71. Chavarro JE, Martín-Calvo N, Yuan C, Arvizu M, Rich-Edwards JW, Michels KB, Sun Q. Association of Birth by Cesarean Delivery with Obesity and Type 2 Diabetes among Adult Women. JAMA Network Open. 2020; 3(4):e202605. https://doi.org/10.1001/jamanetworkopen.2020.2605
  72. Montoya-Williams D, Lemas DJ, Spiryda L, Patel K, Carney OO, Neu J, Carson TL. The Neonatal Microbiome and Its Partial Role in Mediating the Association between Birth by Cesarean Section and Adverse Pediatric Outcomes. Neonatology. 2018;114(2):103-111.  https://doi.org/10.1159/000487102
  73. Victora CG, Bahl R, Barros AJ, França GV, Horton S, Krasevec J, Murch S, Sankar MJ, Walker N, Rollins NC; Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475-490.  https://doi.org/10.1016/S0140-6736(15)01024-7
  74. Harder T, Bergmann R, Kallischnigg G, Plagemann A. Duration of breastfeeding and risk of overweight: a meta-analysis. American Journal of Epidemiology. 2005;162(5):397-403.  https://doi.org/10.1093/aje/kwi222
  75. Yan J, Liu L, Zhu Y, Huang G, Wang PP. The association between breastfeeding and childhood obesity: a meta-analysis. BMC Public Health. 2014; 14:1267. https://doi.org/10.1186/1471-2458-14-1267
  76. Qiao J, Dai LJ, Zhang Q, Ouyang YQ. A Meta-Analysis of the Association between Breastfeeding and Early Childhood Obesity. Journal of Pediatric Nursing. 2020;53:57-66.  https://doi.org/10.1016/j.pedn.2020.04.024
  77. Hartwig FP, Loret de Mola C, Davies NM, Victora CG, Relton CL. Breastfeeding effects on DNA methylation in the offspring: A systematic literature review. PLoS One. 2017;12(3):e0173070. https://doi.org/10.1371/journal.pone.0173070
  78. Melnik BC, Schmitz G. Milk’s Role as an Epigenetic Regulator in Health and Disease. Diseases. 2017;5(1):12.  https://doi.org/10.3390/diseases5010012
  79. Huang J, Zhang Z, Wu Y, Wang Y, Wang J, Zhou L, Ni Z, Hao L, Yang N, Yang X. Early feeding of larger volumes of formula milk is associated with greater body weight or overweight in later infancy. Nutrition Journal. 2018; 17(1):12.  https://doi.org/10.1186/s12937-018-0322-5
  80. Wang J, Wu Y, Xiong G, Chao T, Jin Q, Liu R, Hao L, Wei S, Yang N, Yang X. Introduction of complementary feeding before 4months of age increases the risk of childhood overweight or obesity: a meta-analysis of prospective cohort studies. Nutrition Research. 2016;36(8):759-770.  https://doi.org/10.1016/j.nutres.2016.03.003
  81. Pearce J, Taylor MA, Langley-Evans SC. Timing of the introduction of complementary feeding and risk of childhood obesity: a systematic review. International Journal of Obesity. 2013;37(10):1295-1306. https://doi.org/10.1038/ijo.2013.99
  82. Tang M. Protein Intake during the First Two Years of Life and Its Association with Growth and Risk of Overweight. International Journal of Environmental Research and Public Health. 2018;15(8):1742. https://doi.org/10.3390/ijerph15081742
  83. Fidler Mis N, Braegger C, Bronsky J, Campoy C, Domellöf M, Embleton ND, Hojsak I, Hulst J, Indrio F, Lapillonne A, Mihatsch W, Molgaard C, Vora R, Fewtrell M; ESPGHAN Committee on Nutrition:. Sugar in Infants, Children and Adolescents: A Position Paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. Journal of Pediatric Gastroenterology and Nutrition. 2017;65(6):681-696.  https://doi.org/10.1097/MPG.0000000000001733
  84. Hutchinson J, Rippin H, Threapleton D, Jewell J, Kanamäe H, Salupuu K, Caroli M, Antignani A, Pace L, Vassallo C, Lande B, Hildonen C, Rito AI, Santos M, Gabrijelcic Blenkus M, Sarkadi-Nagy E, Erdei G, Cade JE, Breda J. High sugar content of European commercial baby foods and proposed updates to existing recommendations. Maternal and Child Nutrition. 2021; 17(1):e13020. https://doi.org/10.1111/mcn.13020
  85. Foterek K, Buyken AE, Bolzenius K, Hilbig A, Nöthlings U, Alexy U. Commercial complementary food consumption is prospectively associated with added sugar intake in childhood. The British Journal of Nutrition. 2016; 115(11):2067-2074. https://doi.org/10.1017/S0007114516001367
  86. Beauchamp GK, Moran M. Acceptance of sweet and salty tastes in 2-year-old children. Appetite. 1984;5(4):291-305.  https://doi.org/10.1016/s0195-6663(84)80002-1
  87. Lampard AM, Franckle RL, Davison KK. Maternal depression and childhood obesity: a systematic review. Preventive Medicine. 2014;59:60-67.  https://doi.org/10.1016/j.ypmed.2013.11.020
  88. Ashman AM, Collins CE, Hure AJ, Jensen M, Oldmeadow C. Maternal diet during early childhood, but not pregnancy, predicts diet quality and fruit and vegetable acceptance in offspring. Maternal and Child Nutrition. 2016; 12(3):579-590.  https://doi.org/10.1111/mcn.12151
  89. Faith MS, Heshka S, Keller KL, Sherry B, Matz PE, Pietrobelli A, Allison DB. Maternal-child feeding patterns and child body weight: findings from a population-based sample. Archives of Pediatrics and Adolescent Medicine. 2003;157(9):926-932.  https://doi.org/10.1001/archpedi.157.9.926
  90. Zhang G, Wu L, Zhou L, Lu W, Mao C. Television watching and risk of childhood obesity: a meta-analysis. European Journal of Public Health. 2016; 26(1):13-18.  https://doi.org/10.1093/eurpub/ckv213
  91. Fisher JO, Birch LL, Smiciklas-Wright H, Picciano MF. Breast-feeding through the first year predicts maternal control in feeding and subsequent toddler energy intakes. Journal of the American Dietetic Association. 2000; 100(6):641-646.  https://doi.org/10.1016/S0002-8223(00)00190-5
  92. An R, Xiang X, Xu N, Shen J. Influence of Grandparental Child Care on Childhood Obesity: A Systematic Review and Meta-Analysis. Childhood Obesity. 2020;16(3):141-153.  https://doi.org/10.1089/chi.2019.0246
  93. Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1,6 million participants. The Lancet. Child and Adolescent Health. 2020;4(1):23-35.  https://doi.org/10.1016/S2352-4642(19)30323-2
  94. Silverman MN, Deuster PA. Biological mechanisms underlying the role of physical fitness in health and resilience. Interface Focus. 2014;4(5):20140040. https://doi.org/10.1098/rsfs.2014.0040
  95. Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, Sorrentino G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Frontiers in Psychology. 2018;9:509.  https://doi.org/10.3389/fpsyg.2018.00509
  96. Jackson SE, Kirschbaum C, Steptoe A. Perceived weight discrimination and chronic biochemical stress: A population-based study using cortisol in scalp hair. Obesity. 2016;24(12):2515-2521. https://doi.org/10.1002/oby.21657
  97. Farhat T. Stigma, Obesity and Adolescent Risk Behaviors: Current Research and Future Directions. Current Opinion in Psychology. 2015;5:56-66.  https://doi.org/10.1016/j.copsyc.2015.03.021
  98. Schwarzenberg SJ, Georgieff MK; Committee on Nutrition. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics. 2018;141(2):e20173716. https://doi.org/10.1542/peds.2017-3716
  99. Pandita A, Sharma D, Pandita D, Pawar S, Tariq M, Kaul A. Childhood obesity: prevention is better than cure. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2016;9:83-89.  https://doi.org/10.2147/DMSO.S90783
  100. Weihrauch-Blüher S, Kromeyer-Hauschild K, Graf C, Widhalm K, Korsten-Reck U, Jödicke B, Markert J, Müller MJ, Moss A, Wabitsch M, Wiegand S. Current Guidelines for Obesity Prevention in Childhood and Adolescence. Obesity Facts. 2018;11(3):263-276.  https://doi.org/10.1159/000486512

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.