Морозов С.П.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий» Департамента здравоохранения Москвы

Гаврилов А.В.

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»

Архипов И.В.

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»

Долотова Д.Д.

ООО «Гаммамед-Софт»

Лысенко М.А.

ГБУЗ Москвы «Городская клиническая больница №52 Департамента здравоохранения Москвы»;
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Царенко С.В.

ГБУЗ «Городская клиническая больница №52 Департамента здравоохранения Москвы»

Сморщок В.Н.

ГБУЗ «Городская клиническая больница №52 Департамента здравоохранения Москвы»

Паршин В.В.

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет)

Корб Т.А.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий» Департамента здравоохранения Москвы

Гончар А.П.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения Москвы»

Блохин И.А.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения Москвы»

Логунова Т.А.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения Москвы»

Евтеева К.Б.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения Москвы»

Андрейченко А.Е.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы»

Владзимирский А.В.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы»;
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет)

Омелянская О.В.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы»

Гомболевский В.А.

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий» Департамента здравоохранения Москвы

Влияние технологий искусственного интеллекта на длительность описаний результатов компьютерной томографии пациентов с COVID-19 в стационарном звене здравоохранения

Авторы:

Морозов С.П., Гаврилов А.В., Архипов И.В., Долотова Д.Д., Лысенко М.А., Царенко С.В., Сморщок В.Н., Паршин В.В., Корб Т.А., Гончар А.П., Блохин И.А., Логунова Т.А., Евтеева К.Б., Андрейченко А.Е., Владзимирский А.В., Омелянская О.В., Гомболевский В.А.

Подробнее об авторах

Прочитано: 4326 раз


Как цитировать:

Морозов С.П., Гаврилов А.В., Архипов И.В., и др. Влияние технологий искусственного интеллекта на длительность описаний результатов компьютерной томографии пациентов с COVID-19 в стационарном звене здравоохранения. Профилактическая медицина. 2022;25(1):14‑20.
Morozov SP, Gavrilov AV, Arkhipov IV, et al. Effect of artificial intelligence technologies on the CT scan interpreting time in COVID-19 patients in inpatient setting. Russian Journal of Preventive Medicine. 2022;25(1):14‑20. (In Russ.)
https://doi.org/10.17116/profmed20222501114

Рекомендуем статьи по данной теме:
Ну­жен ли ис­кусствен­ный ин­тел­лект сис­те­ме здра­во­ох­ра­не­ния?. Ме­ди­цин­ские тех­но­ло­гии. Оцен­ка и вы­бор. 2024;(4):40-48

Введение

Ранее неоднократно описана практическая ценность компьютерной томографии (КТ) органов грудной клетки для диагностики пациентов с подозрением на коронавирусную инфекцию (COVID-19) [1]. Несмотря на то что «золотым стандартом» для клинической диагностики COVID-19 является полимеразная цепная реакция с обратной транскрипцией (ОТ-ПЦР), у КТ есть одно несомненное преимущество перед ОТ-ПЦР: скорость выполнения (до 15 мин) [2]. При этом ключевым фактором является правильная интерпретация результатов КТ-исследования.

В условиях пандемии в ГБУЗ «НПКЦ ДиТ ДЗМ» Москвы при участии экспертного профессионального сообщества разработаны методические рекомендации по организации, проведению и интерпретации результатов лучевой диагностики при COVID-19 [3]. Для стандартизации была внедрена упрощенная система оценок степени тяжести поражения легочной ткани по шкале «КТ 0—4». Также проведены исследования, оценивающие специфичность КТ для диагностики пневмонии при COVID-19 по сравнению с другими заболеваниями легких и диагностическую точность этого метода для определения необходимости госпитализации пациентов с COVID-19 [4, 5]. Дополнительно разработаны методические рекомендации по дифференциальной диагностике COVID-19 от других патологических изменений легких у госпитализированных пациентов [6].

В 2020 г. проведена целостная мобилизация службы лучевой диагностики Москвы, включающая Эксперимент по использованию инновационных технологий в области компьютерного зрения для анализа медицинских изображений и его дальнейшего применения в системе здравоохранения города Москвы (далее — Эксперимент) [7]. В связи с эпидемией новой коронавирусной инфекции в Эксперимент была включена отдельная задача по анализу КТ органов грудной клетки для диагностики поражений легких при COVID-19 [8]. До запуска Эксперимента была проведена подготовительная работа по разработке методологии проведения клинических испытаний технологий искусственного интеллекта (ИИ) [9]. Поскольку в начале 2020 г. компании — разработчики алгоритмов ИИ, способные участвовать в Эксперименте, остро нуждались в КТ-данных с проявлениями COVID-19 для обучения и валидации сервисов ИИ, ГБУЗ «НПКЦ ДиТ ДЗМ» Москвы подготовил и опубликовал в открытом доступе один из наиболее крупных в мире наборов данных КТ грудной клетки с изменениями в легких при COVID-19 [10]. Алгоритмы ИИ, основанные на использовании этого набора, способны проводить дифференциальную диагностику COVID-19, бактериальной пневмонии и злокачественных новообразований по данным КТ [11].

В ходе реализации Эксперимента были подведены промежуточные итоги внедрения сервисов ИИ для диагностики COVID-19, однако оригинальное исследование по оценке влияния ИИ на время работы врача-рентгенолога в стационарных медицинских организациях не выполнялись [12].

Цель исследования — оценить влияние алгоритма ИИ на скорость описания результатов КТ органов грудной клетки при подозрении на COVID-19 в стационарном звене городского здравоохранения.

Материал и методы

Дизайн исследования. Ретроспективное исследование выполнено на материалах Эксперимента по использованию инновационных технологий в области компьютерного зрения для анализа медицинских изображений и его дальнейшего применения в системе здравоохранения города Москвы (протокол зарегистрирован в международной базе данных ClinicalTrials.gov, NCT04489992). Проведение Эксперимента было одобрено независимым этическим комитетом МРО РОРР.

Материалы исследования. В период с 08.04.20 по 01.12.20 в медицинских организациях Москвы были выполнены КТ-исследования органов грудной клетки пациентов с подозрением на COVID-19 в соответствии с действующей нормативно-правовой базой. В рамках Эксперимента часть автоматизированных рабочих мест врачей-рентгенологов была оснащена технологиями ИИ — так называемыми ИИ-сервисами, интегрированными в Единый радиологический информационный сервис в составе Единой медицинской информационно-аналитической системы Москвы (ЕРИС ЕМИАС). При формировании протоколов врачи-рентгенологи могли использовать данные автоматизированного анализа результатов лучевых исследований. В любом случае оценка степени поражения легочной ткани при COVID-19 проводилась по шкале «КТ 0—4». В соответствии с планом маршрутизации результатов лучевых исследований в рамках Эксперимента 390 врачей-рентгенологов могли применять ИИ-сервисы при интерпретации результатов КТ пациентов с COVID-19. Контрольную группу составили 57 врачей-рентгенологов, проводивших аналогичные описания, но без автоматизации.

Анализ длительности описаний результатов КТ выполняли с учетом принципов аналитического (поэлементного) метода нормирования труда. Определяли вид работ в соответствии с действующей номенклатурой: описание и интерпретацию компьютерных томограмм. Способом получения информации являлась выгрузка данных отчетности в информационной системе в сфере здравоохранения субъекта Российской Федерации. Данные получали по сформированному запросу из ЕРИС ЕМИАС при содействии сотрудников Департамента информационных технологий Москвы. Временем подготовки описания считали период от момента регистрации исследования в системе ЕРИС ЕМИАС до момента визирования заключения врачом-рентгенологом.

В исследование были включены данные о длительности описаний результатов КТ органов грудной клетки без внутривенного контрастирования, которые были выполнены в 105 медицинских организациях стационарного звена здравоохранения Москвы. Всего для анализа были отобраны 66 512 исследований. Использовали следующие критерии включения и исключения данных.

Критерии включения: КТ-исследования органов грудной клетки мужчин и женщин, направленные на исследование с подозрением на пневмонию COVID-19; КТ-исследования, проведенные в стационарных медицинских организациях; оценка поражения легочной ткани проведена по шкале КТ 0—4 [3]; формирование протоколов описания КТ выполнено в ЕРИС ЕМИАС; возраст пациентов от 18 до 90 лет.

Критерии исключения: КТ-исследования, в заключении которых указаны прочие изменения, не связанные с вирусной пневмонией.

Оборудование и КТ протокол. КТ-исследования проводили на компьютерных томографах (Toshiba Aquilion 64, Canon Medical Systems, Япония; HiSpeed GE, США; Optima CT 660, GE, США; Somatom Emotion 16, Siemens, Германия; Somatom Sensation 40, Siemens, Германия) по стандартным протоколам сканирования органов грудной клетки, рекомендуемым производителями.

Программное обеспечение на основе технологий искусственного интеллекта. Для анализа КТ-исследований использовали программное обеспечение «Гамма Мультивокс Ковирус» (номер свидетельства о государственной регистрации программы для ЭВМ RU 2020615776, eLibrary ID: 43885466), предназначенное для врачей-рентгенологов и анестезиологов-реаниматологов (рис. 1). Алгоритм в автоматическом режиме позволяет получить качественные и количественные данные о патологических областях легких, что является основой для тактики ведения пациентов с COVID-19.

Рис. 1. КТ-изображение с автоматической обработкой алгоритмом «Гамма Мультивокс Ковирус» (а), c дополнительной суммарной информацией о поражении легких (б) и информацией в формате DICOM SR, доступной рентгенологу во время формирования заключения (в).

Программа обеспечивает выполнение следующих функций:

— регистрацию изображений легких в стандарте DICOM после проведения КТ, построение трехмерных (3D) изображений легких;

— обработку изображений с целью сегментации патологических изменений («матовое стекло», плотное «матовое стекло», уплотнения/консолидация, сосуды) и вычисление их объемов с последующей цветной маркировкой;

— представление результатов вычисления объемов поражений легких в виде таблицы для оценки при динамических обследованиях и принятия лечебных решений в процессе ведения пациентов с коронавирусной инфекцией.

Методы статистического анализа. В статистический анализ были включены все имеющиеся данные по длительности интерпретации КТ органов грудной клетки в стационарном звене при использовании системы ИИ и без нее. Для представления результатов использовали методы описательной статистики с указанием следующих характеристик: число непропущенных значений (N), минимальное значение (min), максимальное значение (max), арифметическое среднее (M), стандартное отклонение (SD), 95% доверительный интервал (ДИ) для среднего, медиана (Me), первый (Q1) и третий (Q3) квартили. С учетом отличного от нормального распределения, медиана и среднее являлись взаимодополняемыми характеристиками. В связи с этим представлялось целесообразным давать обе эти характеристики центральной тенденции. В силу центральной предельной теоремы (CLT) любая статистическая характеристика выборки будет иметь нормальное распределение вне зависимости от распределения исходной величины. В связи с этим, учитывая очень большой размер выборки, правомерно использовать параметрические методы анализа. Таким образом, сравнение данных между группами врачей проводили с помощью t-теста. За уровень статистической значимости принимали значение 0,05 (двустороннее). Статистическую обработку данных выполняли с помощью программы Stata14.

Результаты

В исследование были включены 3133 исследования с признаками пневмонии COVID-19 для обработки врачом без системы ИИ (1-я группа) и 63 379 исследований для обработки с использованием ИИ (2-я группа). Детальная информация о длительности описаний в обеих группах представлена в (см. таблицу).

Описательная статистика данных по длительности интерпретации компьютерной томографии органов грудной клетки в стационарном звене (мин)

Параметр

Врач-рентгенолог без ИИ

Врач-рентгенолог с ИИ

N

3133

63 379

Me

184,6

130,3

SD

197,4

216,0

95% ДИ

177,7—191,5

128,6—132,0

Min

0

0

Max

1420

1440

Me

103

46

Q1

42

22

Q3

278

130

p (t-test)

<0,0001

Difference (95% ДИ)

54,3 (46,6—62,0)

Медианная длительность описания в 1-й и 2-й группах составила 103,0 и 46,0 мин соответственно. Гистограмма длительности описания исследования в зависимости от группы представлена на рис. 2. Продолжительность интерпретации результатов КТ органов грудной клетки при использовании технологий ИИ была меньше, различия оказались статистически значимы (p<0,0001). Средняя длительность обработки исследования КТ органов грудной клетки при применении ИИ уменьшилась на 29,4%, медианная — на 55,3%.

Рис. 2. Медианная длительность описания КТ органов грудной клетки в группах «врач-рентгенолог с ИИ» (красные столбцы), «врач-рентгенолог без ИИ» (синие столбцы).

По оси абсцисс — длительность описания в минутах; по оси ординат — доля исследований в процентах.

Обсуждение

Результаты проведенного исследования показали, что алгоритм ИИ «Гамма Мультивокс Ковирус» снижает время обработки КТ органов грудной клетки пациентов с признаками COVID-19.

Результаты настоящей работы соответствуют данным, полученным в ретроспективном исследовании C. Jin и соавт. [13], в котором система ИИ превзошла врачей-рентгенологов по скорости описания компьютерных томограмм органов грудной клетки более чем на 90% (среднее время интерпретации составило 2,73 с против 6,5 мин). Преимуществом исследования C. Jin и соавт. являлась оценка системы ИИ на большом наборе данных, разделенном на несколько групп: исследования томограмм с признаками пневмонии COVID-19, гриппа, невирусной внебольничной пневмонии и другой патологии органов грудной клетки. Наряду с этим ограничением данной работы было сравнение системы ИИ только с 5 врачами-рентгенологами. В настоящем исследовании принимали участие более 300 рентгенологов стационарного звена Москвы.

В исследовании Q. Ni и соавт. [14] также была проведена оценка эффективности использования ИИ в рамках сокращения времени на интерпретацию компьютерных томограмм органов грудной клетки пациентов при пневмонии COVID-19: в среднем на обработку исследования системой ИИ уходило в 4 раза меньше времени, чем врачом. Тем не менее в этой работе оценка КТ органов грудной клетки проводилась 3 молодыми врачами-ординаторами на выборке из 96 пациентов, причем 87,5% компьютерных томограмм были сделаны в одном медицинском учреждении, что вводит определенные ограничения в воспроизводимости результатов.

Схожие результаты представлены и в исследовании J. Yao и соавт. [15], в котором система ИИ проводила оценку изображений примерно в 300 раз быстрее врача-рентгенолога. Несмотря на то, что, помимо молодых врачей, в сравнении участвовали специалисты с опытом более 10 лет, все равно система ИИ показала лучшую производительность. Таким образом, в очередной раз подтверждается эффективность использования систем ИИ в рамках большого потока исследований и высокой нагрузки на специалистов разного уровня.

Ранее были опубликованы данные, свидетельствующие о повышении эффективности работы рентгенологов в дифференции пневмонии COVID-19 от пневмонии другой этиологии с помощью ИИ-сервисов [16]. Так, в работе H. Bai и соавт. [16] было продемонстрировано, что рентгенологи с помощью системы ИИ достигали более высоких диагностических показателей, чем без нее, в том числе средней точности (90% против 85%), чувствительности (88% против 79%) и специфичности (91% против 88%). В работе Y. Yang и соавт. [17] было описано повышение при использовании ИИ средней точности и чувствительности исследований с 0,941 до 0,951 и с 0,895 до 0,942 соответственно, по сравнению с работой врачей-рентгенологов без участия ИИ. Однако, в отличие от настоящего исследования, в вышеуказанных работах авторы не проводили оценку скорости обработки исследований.

K. Zhang и соавт. [18] проводили исследование, где также сравнивали эффективность алгоритма ИИ и работы рентгенологов в диагностике пневмонии COVID-19, однако по системе взвешенных ошибок. В исследовании K. Zhang и соавт. рентгенологи были распределены по группам: младшая (с опытом работы от 5 до 15 лет), старшая (с опытом работы от 15 до 25 лет) и контрольная (с опытом работы более 25 лет). Было доказано, что система ИИ дает возможность повышения эффективности работы младших радиологов до уровня старших.

В проведенном Эксперименте в Москве сравнивали распределение категорий КТ 0—4 в заключениях врачей-рентгенологов, которые использовали результаты работы ИИ, и врачами, которые работали без ИИ [19]. По результатам проведенного исследования выяснилось, что врачи с помощью ИИ реже выставляли КТ0 и тяжелые степени поражения легких — КТ3—4. Таким образом, использование ИИ может позволить точнее определять степень поражения легких, что, в свою очередь, улучшит оценку для прогнозирования летальных исходов среди пациентов, которым выполнена КТ органов грудной клетки [20].

Приоритезация исследований в рабочем списке врача представляется другим способом повышения эффективности работы врача-рентгенолога с помощью ИИ. Так, на примере анализа КТ головного мозга при подозрении на внутричерепное кровоизлияние сортировка исследований с помощью систем ИИ на исследования с наличием или отсутствием патологии позволяет значительно сократить время, что критически важно в неотложных ситуациях [21, 22]. В рамках Эксперимента одним из базовых функциональных требования является наличие сообщений в единой системе уведомлений о наличии целевых патологических изменений как одного из результатов обработки исследований ИИ-сервисом [23].

Ограничение исследования. Настоящее исследование имеет ряд ограничений. Во-первых, это ретроспективный дизайн. Кроме того, оценку степени согласия рентгенологов осуществляли с одним алгоритмом ИИ «Гамма Мультивокс Ковирус», что не может гарантировать высокую эффективность остальных сервисов. Также, поскольку анализ диагностических показателей данного алгоритма регулярно выполняется в рамках Эксперимента [24], была рассмотрена только скорость интерпретации исследований.

Заключение

Применение технологий ИИ при интерпретации результатов КТ органов грудной клетки у пациентов с подозрением на COVID-19 сокращает медианную длительность описания (формирования протокола) в стационарном звене здравоохранения на 55,3%.

Увеличение производительности работы врачей-рентгенологов может повлиять на тактику ведения пациентов, оптимизируя скорость маршрутизации, улучшая прогноз заболевания и тем самым оказывая положительный эффект на систему здравоохранения в целом.

Участие авторов: концепция и дизайн исследования — С.П. Морозов, А.В. Владзимирский, В.А. Гомболевский; сбор и обработка материала — И.В. Архипов, Д.Д. Долотова, Т.А. Логунова, К.Б. Евтеева, А.Е. Андрейченко, О.В. Омелянская; статистическая обработка данных — И.А. Блохин, А.Е. Андрейченко; написание текста — Т.А. Корб, А.П. Гончар, И.А. Блохин, В.А. Гомболевский; редактирование — С.П. Морозов, А.В. Гаврилов, С.В. Царенко, М.А. Лысенко, В.Н. Сморщок, В.В. Паршин, А.В. Владзимирский.

Авторы заявляют об отсутствии конфликтов интересов.

Литература / References:

  1. Морозов С.П., Решетников Р.В., Гомболевский В.А., Ледихова Н.В., Блохин И.А., Мокиенко О.А. Диагностическая точность компьютерной томографии для определения необходимости госпитализации пациентов с COVID-19. Digital Diagnostics. 2021;2(1):5-16.  https://doi.org/10.17816/DD46818
  2. Morozov S, Ledikhova N, Panina E, Polishchuk N, Shulkin I, Baryshov V, Mokienko O, Reshetnikov R, Gombolevskiy V. Re: Controversy in coronaViral Imaging and Diagnostics (COVID). Clin Radiol. 2020;75(11):871-872.  https://doi.org/10.1016/j.crad.2020.07.023
  3. Морозов С.П., Проценко Д.Н., Сметанина С.В., Андрейченко А.Е., Амброси О.Е., Баланюк Э.А., Владзимирский А.В., Ветшева Н.Н., Гомболевский В.А., Епифанова С.В., Ледихова Н.В., Лобанов М.Н., Павлов Н.А., Панина Е.Б., Полищук Н.С., Ридэн Т.В., Соколина И.А., Туравилова Е.В., Федоров С.С., Чернина В.Ю., Шулькин И.М. Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов. Препринт №ЦДТ — 2020 — II. Версия 2 от 17.04.20. Лучшие практики лучевой и инструментальной диагностики. Вып. 65. М.: НПКЦ ДиТ ДЗМ; 2020.
  4. Корб Т.А., Гаврилов П.В., Чернина В.Ю., Блохин И.А., Алешина О.О., Мокиенко О.А., Морозов С.П., Гомболевский В.А. Специфичность компьютерной томографии органов грудной клетки при пневмонии, ассоциированной с COVID-19: ретроспективное исследование. Альманах клинической медицины. 2021;49(1):1-10.  https://doi.org/10.18786/2072-0505-2021-49-001
  5. Морозов С.П., Чернина В.Ю., Блохин И.А., Гомболевский В.А. Прогнозирование исходов при лабораторно верифицированном COVID-19 по данным компьютерной томографии органов грудной клетки: ретроспективный анализ 38 051 пациента. Digital Diagnostics. 2020;1(1):27-36.  https://doi.org/10.17816/DD46791
  6. Агеев Ф.А., Амброси О.Е., Анциферов М.Б., Белевский А.С., Буланов А.Ю., Васильева Е.Ю., Журавлева М.В., Загребнева А.И., Зайратьянц О.В., Лысенко М.А., Мазус А.И., Морозов С.П., Петриков С.С., Плавунов Н.Ф., Проценко Д.Н., Сметанина С.В., Токарев А.С., Тяжельников А.А., Урожаева Ю.В., Фомина Д.С., Цибин А.Н., Цыганова Е.В., Чурадзе Б.Т. Клинический протокол диагностики новой коронавирусной инфекции (COVID-19) у больных, находящихся на стационарном лечении в медицинских организациях государственной системы здравоохранения города Москвы. М.: ГБУ НИИОЗММ ДЗМ; 2021.
  7. Морозов С.П., Кузьмина Е.С., Ледихова Н.В., Владзимирский А.В., Трофименко И.А., Мокиенко О.А., Панина Е.В., Андрейченко А.Е., Омелянская О.В., Гомболевский В.А., Полищук Н.С., Шулькин И.М., Решетников Р.В. Мобилизация научно-практического потенциала службы лучевой диагностики г. Москвы в пандемию COVID-19. Digital Diagnostics. 2020;1(1):5-12.  https://doi.org/10.17816/DD51043
  8. Морозов С.П., Владзимирский А.В., Ледихова Н.В., Андрейченко А.Е., Арзамасов К.М., Баланюк Э.А., Гомболевский В.А., Ермолаев С.О., Живоденко В.С., Идрисов И.М., Кирпичев Ю.С., Логунова Т.А., Нуждина В.А., Омелянская О.В., Раковчен В.Г., Слепушкина А.В. Московский эксперимент по применению компьютерного зрения в лучевой диагностике: вовлеченность врачей-рентгенологов. Врач и информационные технологии. 2020;4:14-23.  https://doi.org/10.37690/1811-0193-2020-4-14-23
  9. Морозов С.П., Владзимирский А.В., Кляшторный В.Г., Андрейченко А.Е., Кульберг Н.С., Гомболевский В.А. Клинические испытания программного обеспечения на основе интеллектуальных технологий (лучевая диагностика). Серия «Лучшие практики лучевой и инструментальной диагностики». Вып. 57. М. 2019.
  10. Морозов С.П., Андрейченко А.Е., Блохин И.А., Гележе П.Б., Гончар А.П., Николаев А.Е., Павлов Н.А., Чернина В.Ю., Гомболевский В.А. MosMedData: датасет 1110 компьютерных томографий органов грудной клетки, выполненных во время эпидемии COVID-19. Digital Diagnostics. 2020;1(1):49-59.  https://doi.org/10.17816/DD46826
  11. Goncharov M, Pisov M, Shevtsov A, Shirokikh B, Kurmukov A, Blokhin I, Chernina V, Solovev A, Gombolevskiy V, Morozov S, Belyaev M. CT-Based COVID-19 triage: Deep multitask learning improves joint identification and severity quantification. Med Image Anal. 2021;71:102054. https://doi.org/10.1016/j.media.2021.102054
  12. Блохин И.А., Морозов С.П., Чернина В.Ю., Андрейченко А.Е., Шахабов И.В., Смышляев А.В., Гомболевский В.А. Использование искусственного интеллекта в здравоохранении: опыт валидации алгоритма искусственного интеллекта в медицинских организациях в условиях пандемии COVID-19. Мониторинг общественного мнения: экономические и социальные перемены. 2021;1:271-282.  https://doi.org/10.14515/monitoring.2021.1.1736
  13. Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X, Deng L, Zheng C, Zhou J, Shi H, Feng J. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat Commun. 2020;11(1):5088. https://doi.org/10.1038/s41467-020-18685-1
  14. Ni Q, Sun ZY, Qi L, Chen W, Yang Y, Wang L, Zhang X, Yang L, Fang Y, Xing Z, Zhou Z, Yu Y, Lu GM, Zhang LJ. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol. 2020;30(12):6517-6527. https://doi.org/10.1007/s00330-020-07044-9
  15. Yao JC, Wang T, Hou GH, Ou D, Li W, Zhu QD, Chen WC, Yang C, Wang LJ, Wang LP, Fan LY, Shi KY, Zhang J, Xu D, Li YQ. AI detection of mild COVID-19 pneumonia from chest CT scans. Eur Radiol. 2021; 31(9):7192-7201. https://doi.org/10.1007/s00330-021-07797-x
  16. Bai HX, Wang R, Xiong Z, Hsieh B, Chang K, Halsey K, Tran TML, Choi JW, Wang DC, Shi LB, Mei J, Jiang XL, Pan I, Zeng QH, Hu PF, Li YH, Fu FX, Huang RY, Sebro R, Yu QZ, Atalay MK, Liao WH. Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT. Radiology. 2020;296(3):156-165.  https://doi.org/10.1148/radiol.2020201491
  17. Yang Y, Lure FYM, Miao H, Zhang Z, Jaeger S, Liu J, Guo L. Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections. J Xray Sci Technol. 2021;29(1):1-17.  https://doi.org/10.3233/XST-200735
  18. Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, Zha Y, Liang W, Wang C, Wang K, Ye L, Gao M, Zhou Z, Li L, Wang J, Yang Z, Cai H, Xu J, Yang L, Cai W, Xu W, Wu S, Zhang W, Jiang S, Zheng L, Zhang X, Wang L, Lu L, Li J, Yin H, Wang W, Li O, Zhang C, Liang L, Wu T, Deng R, Wei K, Zhou Y, Chen T, Lau JY, Fok M, He J, Lin T, Li W, Wang G. Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell. 2020;181(6):1423-1433. https://doi.org/10.1016/j.cell.2020.04.045
  19. Морозов С.П., Чернина В.Ю., Андрейченко А.Е., Владзимирский А.В., Мокиенко О.А., Гомболевский В.А. Как искусственный интеллект влияет на оценку поражения легких при COVID-19 по данным КТ грудной клетки? Digital Diagnostics. 2021;2(1):27-38.  https://doi.org/10.17816/DD60040
  20. Морозов С.П., Гомболевский В.А., Чернина В.Ю., Блохин И.А., Мокиенко О.А., Владзимирский А.В., Белевский А.С., Проценко Д.Н., Лысенко М.А., Зайратьянц О.В., Никонов Е.Л. Прогнозирование летальных исходов при COVID-19 по данным компьютерной томографии органов грудной клетки. Туберкулез и болезни легких. 2020;98(6):7-14.  https://doi.org/10.21292/2075-1230-2020-98-6-7-14
  21. O’Neill TJ, Xi Y, Stehel E, Browning T, Ng YS, Baker C, Peshock RM. Active Reprioritization of the Reading Worklist Using Artificial Intelligence Has a Beneficial Effect on the Turnaround Time for Interpretation of Head CT with Intracranial Hemorrhage. Radiology. Artificial intelligence. 2020;3(2): e200024. https://doi.org/10.1148/ryai.2020200024
  22. Wismüller A, Stockmaster L. A prospective randomized clinical trial for measuring radiology study reporting time on Artificial Intelligence-based detection of intracranial hemorrhage in emergent care head CT. Proc. SPIE 11317, Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, 113170M (28 February 2020). https://doi.org/10.1117/12.2552400
  23. Базовые функциональные требования к работе ИИ-сервисов. Сайт Эксперимента по использованию инновационных технологий в области компьютерного зрения для анализа медицинских изображений и его дальнейшего применения в системе здравоохранения города Москвы mosmed.ai. 2021. Ссылка активна на 17.12.021.  https://mosmed.ai/documents/129/%D0%91%D0%B0%D0%B7%D0%BE%D0%B2%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D1%82%D1%80%D0%B5%D0%B1%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F_%D1%81%D0%B5%D0%BD%D1%82%D1%8F%D0%B1%D1%80%D1%8C_2021.pdf
  24. Лидерборд ИИ-сервисов: август 2021. Сайт Эксперимента по использованию инновационных технологий в области компьютерного зрения для анализа медицинских изображений и его дальнейшего применения в системе здравоохранения города Москвы mosmed.ai. 2021. Ссылка активна на 17.12.21.  https://mosmed.ai/documents/137/%D0%9B%D0%B8%D0%B4%D0%B5%D1%80%D0%B1%D0%BE%D1%80%D0%B4_%D0%98%D0%98-%D1%81%D0%B5%D1%80%D0%B2%D0%B8%D1%81%D0%BE%D0%B2_%D0%B0%D0%B2%D0%B3%D1%83%D1%81%D1%82_2021.pdf

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.