Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Луценко А.С.

ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России,, Москва, Россия

Белая Ж.Е.

ФГУ Эндокринологический научный центр Минздравсоцразвития Российской Федерации, Москва

Пржиялковская Е.Г.

ФГБУ "Эндокринологический научный центр" Минздрава РФ, Москва

Никитин А.Г.

Институт биохимической физики им. Н.М. Эмануэля РАН

Кошкин Ф.А.

Медико-генетический центр «Геномед», Москва, Россия.

Лапшина А.М.

ФГУ Эндокринологический научный центр, Москва

Хандаева П.М.

ФГБУ «Эндокринологический научный центр» Минздрава России, Москва, Россия

Мельниченко Г.А.

ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России, Москва, Россия

Экспрессия циркулирующих микроРНК в плазме у пациентов с акромегалией

Авторы:

Луценко А.С., Белая Ж.Е., Пржиялковская Е.Г., Никитин А.Г., Кошкин Ф.А., Лапшина А.М., Хандаева П.М., Мельниченко Г.А.

Подробнее об авторах

Журнал: Проблемы эндокринологии. 2019;65(5): 311‑318

Просмотров: 797

Загрузок: 17

Как цитировать:

Луценко А.С., Белая Ж.Е., Пржиялковская Е.Г., Никитин А.Г., Кошкин Ф.А., Лапшина А.М., Хандаева П.М., Мельниченко Г.А. Экспрессия циркулирующих микроРНК в плазме у пациентов с акромегалией. Проблемы эндокринологии. 2019;65(5):311‑318.
Lutsenko AS, Belaia ZhE, Przhiialkovskaia EG, Nikitin AG, Koshkin PA, Lapshina AM, Khandaeva PM, Melnichenko GA. Expression of plasma microRNA in patients with acromegaly. Problemy Endokrinologii. 2019;65(5):311‑318. (In Russ.)
https://doi.org/10.14341/probl10263

Рекомендуем статьи по данной теме:
Оцен­ка ме­то­дов ди­аг­нос­ти­ки сар­ко­пе­нии у лиц с на­ру­ше­ни­ем уг­ле­вод­но­го об­ме­на на сов­ре­мен­ном эта­пе. Про­фи­лак­ти­чес­кая ме­ди­ци­на. 2022;(10):116-121
Ат­ро­фия ги­ра­те хо­риоидеи и сет­чат­ки с ор­ни­ти­не­ми­ей и фо­ве­оши­зи­сом (кли­ни­чес­кое наб­лю­де­ние). Вес­тник оф­таль­мо­ло­гии. 2022;(5):80-86
Пер­спек­ти­вы оп­ре­де­ле­ния ин­су­ли­но­по­доб­но­го фак­то­ра рос­та 1 в слю­не. Ла­бо­ра­тор­ная служ­ба. 2022;(3):24-27
Са­ли­вар­ные би­омар­ке­ры воз­рас­тза­ви­си­мых про­цес­сов (об­зор ли­те­ра­ту­ры). Ла­бо­ра­тор­ная служ­ба. 2022;(3):28-33
Соз­да­ние кол­лек­ции за­мо­ро­жен­ных опу­хо­ле­вых и ус­лов­но-здо­ро­вых тка­ней боль­ных ра­ком мо­лоч­ной же­ле­зы. Про­фи­лак­ти­чес­кая ме­ди­ци­на. 2022;(11):76-83
Эво­лю­ция ди­аг­нос­ти­чес­ких гра­ниц бо­лез­ни Альцгей­ме­ра и но­вые те­ра­пев­ти­чес­кие воз­мож­нос­ти. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. Спец­вы­пус­ки. 2022;(11-2):38-44
Роль не­ко­то­рых кли­ни­ко-мор­фо­ло­ги­чес­ких фак­то­ров в оцен­ке эф­фек­тив­нос­ти неоадъю­ван­тно­го хи­ми­олу­че­во­го ле­че­ния аде­но­кар­ци­но­мы пря­мой киш­ки. Он­ко­ло­гия. Жур­нал им. П.А. Гер­це­на. 2022;(6):26-30
Ра­ди­оло­ги­чес­кие би­омар­ке­ры гли­ом го­лов­но­го моз­га. Жур­нал «Воп­ро­сы ней­ро­хи­рур­гии» име­ни Н.Н. Бур­ден­ко. 2022;(6):121-126
Пер­со­ни­фи­ка­ция ан­ти­аг­ре­ган­тной те­ра­пии у боль­ных с ише­ми­чес­кой бо­лез­нью сер­дца: прош­лое, нас­то­ящее и бу­ду­щее. Кар­ди­оло­ги­чес­кий вес­тник. 2022;(4):5-15
Вли­яние во­ле­ми­чес­ко­го ста­ту­са на кон­цен­тра­цию пред­сер­дно­го нат­ри­йу­ре­ти­чес­ко­го пеп­ти­да у кар­ди­охи­рур­ги­чес­ких па­ци­ен­тов. Кар­ди­оло­гия и сер­деч­но-со­су­дис­тая хи­рур­гия. 2023;(1):32-38

Обоснование

Акромегалия (АМ) – эндокринное заболевание, причиной которого является избыточная продукция соматотропного гормона (СТГ). В подавляющем большинстве случаев источником гиперсекреции СТГ является аденома гипофиза. Распространенность А.М., по разным оценкам, составляет около 28–137 случаев на 1 млн населения [1]. Заболевание характеризуется длительным и в большинстве случаев малосимптомным течением, что способствует развитию осложнений со стороны органов и систем, росту аденомы гипофиза и увеличению смертности [2]. Методом первой линии в лечении АМ является оперативное вмешательство: транссфеноидальная аденомэктомия. Частота ремиссий после операции зависит от размера образования и от его анатомического расположения. В случае неэффективности хирургического лечения возможно проведение повторной операции или назначение медикаментозной терапии.

Существует несколько классов препаратов для медикаментозного лечения АМ: агонисты рецепторов дофамина, аналоги соматостатина, антагонисты рецептора СТГ [3]. К основным нерешенным проблемам медикаментозного лечения относятся высокая стоимость препаратов, а также сложность в определении категорий пациентов, которые будут чувствительны к такому лечению [4]. Данные проблемы диктуют необходимость поиска новых биомаркеров активности заболевания и предикторов ответа на консервативную терапию.

МикроРНК – класс малых некодирующих молекул РНК, участвующих в посттранскрипционной регуляции экспрессии генов. В настоящее время микроРНК активно изучаются, поскольку участвуют в патогенезе многих заболеваний. Кроме того, они определяются во всех биологических жидкостях человека в относительно стабильных концентрациях, в связи с чем их можно рассматривать в качестве потенциальных биомаркеров эндокринных заболеваний [5].

Изменения экспрессии микроРНК в аденомах гипофиза – предмет интереса и активного изучения в научном сообществе. Со времен первой публикации A. Bottoni и соавт. [6], которые обнаружили снижение экспрессии miR-15a и miR-16−1 в аденомах по сравнению с нормальной тканью гипофиза, было проведено большое количество исследований, в которых соматотропиномы сравнивались с аденомами, секретирующими другие тропные гормоны, и с гормонально-неактивными аденомами. Также анализировались различия тканевой экспрессии микроРНК в зависимости от размера соматотропином, их агрессивности, гистотипа, экспрессии рецепторов соматостатина и чувствительности к лечению аналогами соматостатина. Стоит отметить, что, несмотря на полученные различия, согласованные изменения в различных публикациях достаточно редки [7]. В циркуляции микроРНК анализировались как маркеры костного метаболизма у пациентов с активной акромегалией [8] и на фоне ремиссии акромегалии [9]. В обоих исследованиях изучалось содержание предварительно выбранного списка микроРНК методом количественной полимеразной цепной реакции с обратной транскрипцией. Также экспрессия микроРНК исследовалась в образцах костной ткани при акромегалии [10].

Существуют различные способы оценки экспрессии циркулирующих микроРНК. В настоящее время основными являются Nothern blotting, полимеразная цепная реакция (ПЦР), количественная ПЦР с обратной транскрипцией (qRT-PCR), микроРНК-микрочипы и высокопроизводительное секвенирование (или next-generation sequencing, NGS). Для нашего исследования мы выбрали метод высокопроизводительного секвенирования. Достоинствами данного метода являются большая пропускная способность, низкие требования к количеству РНК для анализа, возможность получения корректных и качественных данных при более широком диапазоне определения микроРНК, а также обнаружения изомеров микроРНК (isomiR) и новых микроРНК. К недостаткам данного метода относятся высокая стоимость и необходимость многокомпонентного биоинформатического анализа получаемых данных. Кроме того, данные, полученные при помощи NGS, необходимо подтверждать дополнительным методом оценки экспрессии, в качестве которого наиболее часто используется qRT-PCR [8].

Определить циркулирующие микроРНК, различно экспрессирующиеся у пациентов с акромегалией по сравнению со здоровым контролем.

Методы

Дизайн исследования

Проведено одноцентровое, одномоментное, выборочное исследование случай-контроль.

Критерии соответствия

Критерии включения: активная стадия АМ, подтвержденная типичными клиническими проявлениями, повышением ИРФ-1 (согласно возрастному референсному диапазону) и отсутствием подавления секреции СТГ до концентрации <1,0 нг/мл в ходе перорального глюкозотолератного теста (ПГТТ).

Критерии исключения: прием аналогов соматостатина в анамнезе или на момент включения в исследования; лучевая терапия в анамнезе; акромегалия вследствие генетических синдромов.

В качестве контрольной группы выбраны здоровые добровольцы без клинических проявлений эндокринных заболеваний.

Условия проведения

Набор пациентов и забор биологического материала проводились на базе отделения нейроэндокринологии и остеопатий ФГБУ «НМИЦ эндокринологии» Минздрава России. Выделение микроРНК и биоинформатический анализ результатов секвенирования проводились на базе ФГБУ «НИИпульмонологии» ФМБА России. Высокопроизводительное секвенирование проводилось на базе лаборатории «Геномед».

Продолжительность исследования

Набор пациентов и материала для биобанка проведен в период с декабря 2016 г. по декабрь 2017 г.

Описание медицинского вмешательства

Пациентам проводился забор цельной крови утром натощак. В течение 30 мин после забора крови образцы цельной крови однократно центрифугировались (лабораторная центрифуга Eppendorf 5810R с комплектом роторов (А-4−81, Ф-4−81-MTP/Flex, FA-45−30−11 и F-45−48-PCR) при температуре +5 °С на скорости вращения 3000 об/мин в течение 20 мин. Далее образцы плазмы раскапывались в криопробирки, замораживались и хранились при температуре –80 °C.

Основной исход исследования

В качестве конечных точек исследования фиксировали показатели экспрессии циркулирующих микроРНК.

Анализ в подгруппах

Сравнение показателей проведено между двумя основными группами – пациентов с акромегалией и здоровыми добровольцами. Разделение на подгруппы не проводилось.

Методы регистрации исходов

Выделение микроРНК из 200 мкл плазмы проводили с помощью miRNeasy Serum/Plasma Kit («Qiagen», Германия) согласно инструкции компании-производителя, на автоматической станции QIAcube («Qiagen», Германия). Для предотвращения деградации в выделенную РНК добавляли 1 ед. RiboLock RNase Inhibitor («Thermo Fisher Scientific», США) на 1 мкл раствора нуклеиновых кислот. Концентрацию суммарной РНК в водном растворе оценивали на спектрофотометре NanoVue Plus («GE Healthcare», Великобритания).

Полногеномный анализ экспрессии микроРНК был выполнен на высокопроизводительном секвенаторе NextSeq с помощью TruSeq Small RNA Library Prep Kit. Биоинформатический анализ выполнялся с помощью программного обеспечения atropos (удаление адаптеров), STAR (выравнивание), FastQC (контроль качества), seqbuster/seqcluster/miRge2 (аннотация микроРНК, поиск isomiR, поиск новых микроРНК, анализ экспрессии).

Концентрацию ИФР-1 измеряли с помощью иммунохемилюминесценции (Liaison). Возрастные референсные диапазоны:

– 18–20 лет: 127–584 нг/мл;

– 21–25 лет: 116–358 нг/мл;

– 26–30 лет: 117–329 нг/мл;

– 31–35 лет: 115–307 нг/мл;

– 36–40 лет: 109–284 нг/мл;

– 41–45 лет: 101–267 нг/мл;

– 46–50 лет: 94–252 нг/мл;

– 51–55 лет: 87–238 нг/мл;

– 56–60 лет: 81–225 нг/мл;

– 61–65 лет: 75–212 нг/мл.

Этическая экспертиза

Исследование одобрено локальным этическим комитетом при ФГБУ «Эндокринологический научный центр» Минздрава России. Протокол заседания № 20 от 14 декабря 2016 г.

Статистический анализ

Размер выборки предварительно не рассчитывался ввиду редкости заболевания и пилотного характера исследования. Сравнение описательных параметров пациентов с АМ и группы контроля с использованием непарных двусторонних t-тестов. Для сравнения качественных параметров двух независимых групп использован точный критерий Фишера. Значение p<0,05 считалось статистически достоверным. Вся аналитическая статистика выполнена с использованием базового пакета «stats».

Биоинформатический анализ данных секвенирования выполнен при помощи пакета DESeq2. Поправка на множественную проверку гипотез выполнена методом Бенджамини–Хохберга [9].

Результаты

Объекты (участники) исследования

В исследование включены 12 пациентов с АМ и 12 здоровых добровольцев. Исходные характеристики участников исследования представлены в табл. 1.

Таблица 1. Сравнительная характеристика участников исследования

Основные результаты исследования

По результатам биоинформатического анализа выявлены четыре микроРНК, экспрессия которых снижена в плазме крови у пациентов с АМ по сравнению со здоровыми добровольцами: miR-4446−3p, miR-215−5p, miR-342−5p и miR-191−5p (табл. 2).

Таблица 2. МикроРНК, различно экспрессирующиеся в плазме крови пациентов с акромегалией по сравнению со здоровыми добровольцами
Однако после поправки на множественную проверку гипотез экспрессия представленных микроРНК не достигла достоверных различий.

Нежелательные явления

В ходе исследования нежелательные явления не фиксировались.

Обсуждение

Резюме основного результата исследования

В представленном исследовании впервые проведен анализ экспрессии циркулирующих микроРНК плазмы крови у пациентов с АМ методом высокопроизводительного секвенирования. Полученные данные позволяют установить гипотезу о том, что miR-4446−3p, miR-215−5p и miR-342−5p, miR-191−5p различно экспрессируются у пациентов с АМ по сравнению со здоровым контролем.

Обсуждение основного результата исследования

Настоящее исследование является первой работой по оценке профиля экспрессии микроРНК в периферической крови пациентов с активной АМ методом высокопроизводительного секвенирования. Ранее методом qRT-PCR был проведен анализ экспрессии микроРНК, которые предположительно участвуют в регуляции костного метаболизма [8–10]. Так, в исследовании Т.А. Гребенниковой и соавт. [10], было обнаружено снижение экспрессии miR-100−5p, miR-550a-5p, miR-7b-5p, miR-96−5p в плазме крови у пациентов с активной АМ по сравнению со здоровым контролем. Однако авторам этого исследования не удалось выявить связей между экспрессией микроРНК в костной ткани и плазме у пациентов с АМ [8,10]. Эти микроРНК не отличались у пациентов с АМ и здорового контроля и в нашем исследовании, возможно, из-за снижения чувствительности при анализе большого количества микроРНК. E. Valassi и соавт. [11] изучали экспрессию циркулирующих микроРНК сыворотки, предположительно участвующих в метаболизме кости, у пациентов с компенсированной АМ по сравнению со здоровым контролем. Обнаружены различия в экспрессии miR-103a-3p, miR-191−5p, miR-660−5p, при этом изменения в экспрессии коррелировали с показателями минерально-костного обмена и МПК, что позволяет предположить участие микроРНК в патогенезе костных нарушений и возможность их использования в качестве биомаркеров. Интересно, что miR-191−5p была понижена в плазме пациентов с активной АМ в нашем исследовании, но стала повышенной у пациентов с ремиссией АМ [9]. Возможно, изменения в экспрессии данной микроРНК отражают активность заболевания. Мы не обнаружили различий по miR-103a-3p и miR-660−5p.

На момент подачи рукописи нам не удалось найти данных по измененной экспрессии miR-4446−3p, miR-215−5p, miR-342−5p и miR-191−5p в аденомах гипофиза [12]. Вместе с тем, согласно данным литературы [13], экспрессия miR-4446−3p повышена в сыворотке при раке молочной железы. Кроме того, B. Kim и соавт. [14] отметили повышение экспрессии miR-4446−3p после компрессии клеток из линии агрессивного низкодифференцированного рака молочной железы – MDA-MB-231. В исследовании J. Wang и соавт. [15] отмечено снижение экспрессии miR-4446−3p в сыворотке у пациентов с резистентной к лечению эпилепсией по сравнению с пациентами, чувствительными к терапии. Экспрессия miR-215−5p повышена в сыворотке пациентов с остеосаркомой по сравнению со здоровым контролем [16]. По данным Vychytilova-Faltejskova P. и соавт. [17], экспрессия miR-215−5p повышена в тканях опухоли при колоректальном раке, а ее экспериментально подтвержденными мишенями являются различные звенья EGFR – каноничного сигнального пути патогенеза колоректального рака.

Экспрессия miR-342−5p повышена в периферических мононуклеарных клетках у пациентов с ишемической болезнью сердца по сравнению со здоровым контролем, кроме того, отмечена прямая корреляция с воспалительными цитокинами. Авторы делают вывод о регулирующей роли miR-342−5p в процессах атеросклероза и секреции цитокинов, хотя необходимо больше исследований в данном направлении [18]. Также экспериментально подтверджено, что miR-342−5p является многофункциональным репрессором ангиогенеза в эндотелиоцитах [19]. Согласно исследованию на клеточных линиях колоректального рака SW480 и SW620, мишенью miR-342−5p в этих клетках является мРНК гена N-a-acetyltransferase 10 protein (NAA10). Подавляя его, miR-342−5p осуществляет репрессию туморогенеза. Нарушения регуляции данного гена ассоциированы с различными онкологическими заболеваниями у человека, включая колоректальный рак. Данные результаты были подтверждены исследованиями в тканях при колоректальном раке у человека: обнаружена обратная корреляция между экспрессией miR-342−5p и NAA10 [20].

По данным Rosignolo F. и соавт., экспрессия miR-191−5p повышена в сыворотке у пациентов с папиллярным раком щитовидной железы по сравнению со здоровым контролем [21]. MiR-191−5p является одним из компонентов панели из семи микроРНК плазмы, которые позволяют отличить пациентов с болезнью Альцгеймера от здоровых с точностью более 95%: между группами экспрессия каждой микроРНК панели отличается более чем в 2 раза [22]. Повышение экспрессии miR-191−5p в клеточных линиях рака молочной железы MCF7 и ZR-75 приводит к ингибированию апоптоза, прямой мишенью miR-191−5p является SOX4. [23] Экспрессия miR-191−5p повышена в сыворотке при рассеянном склерозе по сравнению со здоровыми добровольцами [24]. Также экспрессия данной микроРНК повышена в периферических мононуклеарных клетках при синдроме дефицита внимания по сравнению со здоровыми добровольцами [25].

Прямое действие микроРНК на мишени сложно определить, так как каждая микроРНК может большое количество мишеней. Существуют биоинформатические базы данных, в которых содержится информация о предполагаемых взаимодействиях между микроРНК и мРНК-мишенями на основе их комплементарности – TargetScan [26], miRanda [27], DIANA-microT [28], PicTAR [29] и др. Мы провели поиск взаимодействий выявленных микроРНК при помощи TargetScan. Результаты оцениваются согласно индексу cumulative weighted context++ score, отражающему вклад 14 показателей вероятности связывания – значения в диапазоне от 1 до –3. Чем меньше значение – тем больше вероятность взаимодействия [30].

Результаты поиска в базе TargetScan представлены в табл. 3.

Таблица 3. Некоторые мишени микроРНК, представленные в базе TargetScan
Семейство транскрипционных факторов SOX – белки, играющие ключевую роль в развитии органов и систем человека [31], в том числе в эмбриональном развитии гипофиза [32]. Сигнальный путь NOTCH регулирует процессы эмбриогенеза и поддержания гомеостаза тканей и органов человека, его влияние на внутриклеточные сигнальные пути определяет судьбу клетки [33]. Описаны различия в экспрессии компонентов данного сигнального пути в аденомах гипофиза различных гистотипов [34]. PRKAR1A является геном-супрессором опухолевого роста, кодирующим 1-α регуляторную субъединицу цАМФ зависимой протеинкиназы A. Существует взаимосвязь между мутациями в гене PRKAR1A и возникновением Карни-комплекса – заболеванием, характеризующимся возникновением миксом сердца, кожи и других тканей, а также новообразований гипофиза, щитовидной железы, надпочечников и других эндокринных органов. Мутация PRKAR1A обнаруживается приблизительно у 70% пациентов с Карни-комплексом [35]. Уровень экспрессии рецепторов соматостатина 2-го и 5-го подтипов является предиктором чувствительности к аналогам соматостатина первого поколения [36].

Указанные взаимодействия необходимо подтвердить экспериментально, поскольку для того, чтобы взаимодействие между микроРНК и мишенью состоялось, необходимо чтобы они находились в одной клетке в одно и то же время. Кроме того, уровень экспрессии должен быть достаточным для репрессии трансляции [37]. По данным литературы, из представленных взаимодействий экспериментально подтверждались miR-215−5p и PRKAR1A [38], а также miR-4446−3p и NOTCH2 [39].

Исходя из анализа данных литературы, одна и та же микроРНК может участвовать в различных физиологических и патологических процессах. Определение одних и тех же микроРНК в качестве биомаркеров различных заболеваний поднимает вопрос специфичности данных изменений. Представляется перспективным исследование нескольких микроРНК в качестве диагностической панели, что позволит повысить специфичность метода.

Ограничения исследования

Ограничениями представленного исследования являются малый размер выборки и отсутствие валидизации полученных результатов другим методом оценки экспрессии циркулирующих микроРНК. Исследование большого количества микроРНК методом высокопроизводительного секвенирования зачастую не позволяет достичь статистически достоверного результата с применением поправки на множественные сравнения, поэтому результат необходимо подтверждать проведением других методов анализа, в частности, qRT-PCR, при этом в литературе встречаются публикации, в которых NGS использовался как единственный метод оценки экспрессии [40–42]. По результатам представленного исследования установлена гипотеза о различиях в экспрессии циркулирующих микроРНК между представленными группами.

Заключение

В представленном исследовании впервые использован метод высокопроизводительного секвенирования для оценки экспрессии микроРНК плазмы у пациентов с А.М. Выявлено снижение экспрессии miR-4446−3p, miR-215−5p и miR-342−5p, miR-191−5p – микроРНК, которые связаны с патогенезом различных онкологических заболеваний: колоректального рака, рака молочной железы и папиллярного рака щитовидной железы, что представляет интерес для дальнейших исследований, учитывая повышенный риск онкологических заболеваний при АМ.

Нам не удалось подтвердить полученные ранее данные по измененной экспрессии микроРНК, участвующих в минерально-костном обмене, что может быть связано с различиями в исходном материале (сыворотка или плазма), с малым размером выборки в представленном исследовании или иными факторами. Учитывая отсутствие достоверности по вышеуказанным изменениям при применении поправки на множественность сравнений, необходимо проведение дальнейших исследований на большей выборке с использованием валидизирующего метода. При выявлении достоверных различий перспектива научного применения заключается в изучении прогностической ценности циркулирующих микроРНК в отношении активности АМ, послеоперационного прогноза и чувствительности к консервативному лечению.

Дополнительная информация

Источник финансирования. Исследование проведено при поддержке Российского научного фонда (проект № 19−15−00398).

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Участие авторов: Ж.Е. Белая, Г.А. Мельниченко, А.С. Луценко – концепция и научное руководство исследования; А.С. Луценко, П.М. Хандаева – сбор материала; А.Г. Никитин, Ф.А. Кошкин – выделение РНК и анализ экспрессии микроРНК; А.Г. Никитин, А.С. Луценко – статистическая обработка данных; А.С. Луценко – написание основного текста рукописи; Ж.Е. Белая, Е.Г. Пржиялковская, А.Г. Никитин, Г.А. Мельниченко, А.М. Лапшина – редактирование текста рукописи. Все авторы внесли значимый вклад в проведение исследования и подготовку статьи, прочли и одобрили финальную версию статьи перед публикацией.

Сведения об авторах

*Луценко Александр Сергеевич [Alexander S. Lutsenko, MD]; адрес: Россия, 117036, Москва. ул. Дмитрия Ульянова, д. 11 [address: 11 Dmitriya Ulyanova street, 117036 Moscow, Russia]; ORCID: http://orcid.org/0000-0002-9314-7831; eLibrary SPIN: 4037-1030; e-mail: some91@mail.ru

Белая Жанна Евгеньевна, д.м.н. [Zhanna E. Belaya, MD, PhD]; https://orcid.org/0000-0002-6674-6441; eLibrary SPIN: 4746-7173; e-mail: jannabelaya@gmail.com

Пржиялковская Елена Георгиевна, к.м.н. [Elena G. Przhiyalkovskaya, MD, PhD] ORCID: http://orcid.org/0000-0001-9119-2447; eLibrary SPIN: 9309-3256; e-mail: przhiyalkovskaya.elena@gmail.com

Никитин Алексей Георгиевич, к.б.н. [Alexey G. Nikitin, PhD]; ORCID: https://orcid.org/0000-0001-9762-3383; eLibrary SPIN: 3367-0680; e-mail: avialn@gmail.com

Кошкин Филипп Александрович, к.б.н. [Philipp A. Koshkin, PhD]; ORCID: https://orcid.org/0000-0001-9512-9277; eLibrary SPIN: 5627-2121; e-mail: philipkoshkin@gmail.com

Лапшина Анастасия Михайловна, к.м.н. [Anastasia M. Lapshina, MD, PhD]; ORCID: http://orcid.org/0000-0003-4353-6705; eLibrary SPIN: 1582-5033; e-mail: nottoforget@yandex.ru

Хандаева Патимат Магомедовна [Patimat M. Khandaeva, MD]; ORCID: https://orcid.org/0000-0002-6993-5096; eLibrary SPIN: 6950-5200; e-mail: pati_khandaeva@mail.ru

Мельниченко Галина Афанасьевна, д.м.н., профессор, академик РАН [Galina A. Melnichenko, MD, PhD, professor];

КАК ЦИТИРОВАТЬ:

Луценко А.С., Белая Ж.Е., Пржиялковская Е.Г., Никитин А.Г., Кошкин Ф.А., Лапшина А.М., Хандаева П.М., Мельниченко Г.А. Экспрессия циркулирующих микроРНК в плазме у пациентов с акромегалией. // Проблемы эндокринологии. – 2019. – Т. 66. – №5. – С. 311-318. https://doi.org/10.14341/probl10263

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail



Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.