The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Semenova E.I.

The Institute of Molecular Genetics of National Research Centre «Kurchatov Institute»

Rudenok M.M.

The Institute of Molecular Genetics of National Research Centre «Kurchatov Institute»

Alieva A.Kh.

The Institute of Molecular Genetics of National Research Centre «Kurchatov Institute»

Karabanov A.V.

Research Center of Neurology

Illarioshkin S.N.

Research Center of Neurology

Slominsky P.A.

The Institute of Molecular Genetics of National Research Centre «Kurchatov Institute»

Shadrina M.I.

The Institute of Molecular Genetics of National Research Centre «Kurchatov Institute»

Analysis of DNM2, EPN2 and EXOC4 relative gene expression levels in peripheral blood from Parkinson’s disease patients

Authors:

Semenova E.I., Rudenok M.M., Alieva A.Kh., Karabanov A.V., Illarioshkin S.N., Slominsky P.A., Shadrina M.I.

More about the authors

Read: 984 times


To cite this article:

Semenova EI, Rudenok MM, Alieva AKh, Karabanov AV, Illarioshkin SN, Slominsky PA, Shadrina MI. Analysis of DNM2, EPN2 and EXOC4 relative gene expression levels in peripheral blood from Parkinson’s disease patients. Molecular Genetics, Microbiology and Virology. 2021;39(3):25‑30. (In Russ.)
https://doi.org/10.17116/molgen20213903125

Recommended articles:
Diagnosis and treatment approaches for sialorrhea in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):29-34
Neurochemical mechanisms of tremor in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):64-72
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Bladder dysfunction in patients with stages I—III of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):91-99
A portrait of a doctor with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):160-164
Pathomorphosis of the Parkinson’s disease against the background of DBS STN. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):21-27

References:

  1. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nature reviews Disease primers. 2017;3:17013. https://doi.org/10.1038/nrdp.2017.13
  2. Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Frontiers in aging neuroscience. 2018;10:109.  https://doi.org/10.3389/fnagi.2018.00109
  3. Borrageiro G, Haylett W, Seedat S. A review of genome-wide transcriptomics studies in Parkinson’s disease. Eur J Neurosci. 2018;47(1):1-16.  https://doi.org/10.1111/ejn.13760
  4. Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, et al. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain: a journal of neurology. 2009;132(Pt 7):1795-1809. https://doi.org/10.1093/brain/awn323
  5. Bossers K, Meerhoff G, Balesar R, van Dongen JW, Kruse CG, Swaab DF, et al. Analysis of gene expression in Parkinson’s disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain pathology (Zurich, Switzerland). 2009;19(1):91-107.  https://doi.org/10.1111/j.1750-3639.2008.00171.x
  6. Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ, Fefer D, et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Nat Acad Sci USA. 2007;104(3):955-960.  https://doi.org/10.1073/pnas.0610204104
  7. Caronti B, Tanda G, Colosimo C, Ruggieri S, Calderaro C, Palladini G, et al. Reduced dopamine in peripheral blood lymphocytes in Parkinson’s disease. Neuroreport. 1999;10(14):2907-2910. https://doi.org/10.1097/00001756-199909290-00006
  8. Barbanti P, Fabbrini G, Ricci A, Cerbo R, Bronzetti E, Caronti B, et al. Increased expression of dopamine receptors on lymphocytes in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society. 1999;14(5):764-771.  https://doi.org/10.1002/1531-8257(199909)14:5%3C764::aid-mds1008%3E3.0.co;2-w
  9. Alieva AK, Filatova EV, Kolacheva AA, Rudenok MM, Slominsky PA, Ugrumov MV, et al. Transcriptome Profile Changes in Mice with MFTP-Induced Early Stages of Parkinson’s Disease. Molecular neurobiology. 2017;54(9):6775-6784. https://doi.org/10.1007/s12035-016-0190-y
  10. Kalia LV, Lang AE. Parkinson’s disease. Lancet (London, England). 2015;386(9996):896-912.  https://doi.org/10.1016/S0140-6736(14)61393-3
  11. Hasegawa T, Sugeno N, Kikuchi A, Baba T, Aoki M. Membrane Trafficking Illuminates a Path to Parkinson’s Disease. The Tohoku journal of experimental medicine. 2017;242(1):63-76.  https://doi.org/10.1620/tjem.242.63
  12. Sheehan P, Yue Z. Deregulation of autophagy and vesicle trafficking in Parkinson’s disease. Neuroscience letters. 2019;697:59-65.  https://doi.org/10.1016/j.neulet.2018.04.013
  13. Alieva A, Shadrina MI, Filatova EV, Karabanov AV, Illarioshkin SN, Limborska SA, et al. Involvement of endocytosis and alternative splicing in the formation of the pathological process in the early stages of Parkinson’s disease. BioMed research international. 2014;2014:718732. https://doi.org/10.1155/2014/718732
  14. Starovatykh YS, Rudenok MM, Karabanov AV, Illarioshkin SN, Slominsky PA, Shadrina MI. Analysis of the expression of cln3, gabbr1 and wfs1 genes in patients with parkinson’s disease. Molecular Genetics Microbiology and Virology (Russian version). 2020;38(2):76. (In Russ.) https://doi.org/10.17116/molgen20203802176
  15. Rudenok MM, Alieva AKh, Nikolaev MA, Kolacheva AA, Ugryumov MV, Pchelina SN i dr. Possible Involvement of Genes Related to Lysosomal Storage Disorders in the Pathogenesis of Parkinson’s Disease. Mol Biol. 2019;53(1):28-36. (In Russ.) https://doi.org/10.1134/S0026898419010142
  16. Rosenthal JA, Chen H, Slepnev VI, Pellegrini L, Salcini AE, Di Fiore PP, et al. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J Biol Chem. 1999;274(48):33959-33965. https://doi.org/10.1074/jbc.274.48.33959
  17. Munson M, Novick P. The exocyst defrocked, a framework of rods revealed. Nature structural & molecular biology. 2006;13(7):577-581.  https://doi.org/10.1038/nsmb1097
  18. Lalli G, Hall A. Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. J Cell Biol. 2005;171(5):857-869.  https://doi.org/10.1083/jcb.200507061
  19. Sans N, Prybylowski K, Petralia RS, Chang K, Wang YX, Racca C, et al. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nature cell biology. 2003;5(6):520-530.  https://doi.org/10.1038/ncb990
  20. Kennedy MJ, Ehlers MD. Mechanisms and function of dendritic exocytosis. Neuron. 2011;69(5):856-875.  https://doi.org/10.1016/j.neuron.2011.02.032
  21. Mellone M, Zianni E, Stanic J, Campanelli F, Marino G, Ghiglieri V, et al. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiology of disease. 2019;121:338-349.  https://doi.org/10.1016/j.nbd.2018.09.021
  22. Kobylecki C, Cenci MA, Crossman AR, Ravenscroft P. Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson’s disease. Journal of neurochemistry. 2010;114(2):499-511.  https://doi.org/10.1111/j.1471-4159.2010.06776.x
  23. Rascol O, Fox S, Gasparini F, Kenney C, Di Paolo T, Gomez-Mancilla B. Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Parkinsonism & related disorders. 2014;20(9):947-956.  https://doi.org/10.1016/j.parkreldis.2014.05.003
  24. Szénási G, Vegh M, Szabo G, Kertesz S, Kapus G, Albert M, et al. 2,3-benzodiazepine-type AMPA receptor antagonists and their neuroprotective effects. Neurochemistry international. 2008;52(1-2):166-183.  https://doi.org/10.1016/j.neuint.2007.07.002
  25. Grassart A, Cheng AT, Hong SH, Zhang F, Zenzer N, Feng Y, et al. Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. The Journal of cell biology. 2014;205(5):721-735.  https://doi.org/10.1083/jcb.201403041
  26. Koutsopoulos OS, Koch C, Tosch V, Böhm J, North KN, Laporte J. Mild functional differences of dynamin 2 mutations associated to centronuclear myopathy and Charcot-Marie Tooth peripheral neuropathy. PloS one. 2011;6(11):e27498. https://doi.org/10.1371/journal.pone.0027498
  27. Stafa K, Tsika E, Moser R, Musso A, Glauser L, Jones A, et al. Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily. Human molecular genetics. 2014;23(8):2055-2077. https://doi.org/10.1093/hmg/ddt600
  28. Ferguson SS, Zhang J, Barak LS, Caron MG. Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life sciences. 1998;62(17-18):1561-1565. https://doi.org/10.1016/S0024-3205(98)00107-6
  29. Sander CY, Hooker JM, Catana C, Rosen BR, Mandeville JB. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2016;41(5):1427-1436. https://doi.org/10.1038/npp.2015.296
  30. Kabbani N, Jeromin A, Levenson R. Dynamin-2 associates with the dopamine receptor signalplex and regulates internalization of activated D2 receptors. Cellular signalling. 2004;16(4):497-503.  https://doi.org/10.1016/j.cellsig.2003.09.011

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.