The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Oleynik B.A.

Bashkir State Medical University

Plechev V.V.

Bashkir State Medical University

Starodubov V.I.

Russian Research Institute of Health

Evdakov V.A.

Russian Research Institute of Health

Izhbuldin R.I.

Bashkir State Medical University

Abzalilova L.R.

Ufa University of Science and Technology

Influence of perioperative pharmacological stimulation of angiogenesis with 5-oxymethyluracil on long-term results of myocardial revascularization

Authors:

Oleynik B.A., Plechev V.V., Starodubov V.I., Evdakov V.A., Izhbuldin R.I., Abzalilova L.R.

More about the authors

Read: 1495 times


To cite this article:

Oleynik BA, Plechev VV, Starodubov VI, Evdakov VA, Izhbuldin RI, Abzalilova LR. Influence of perioperative pharmacological stimulation of angiogenesis with 5-oxymethyluracil on long-term results of myocardial revascularization. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;17(1):22‑28. (In Russ.)
https://doi.org/10.17116/kardio20241701122

Recommended articles:
Prognostic role of frailty in early and long-term prognosis after coro­nary artery bypass grafting. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(5):512-518
Radionuclide methods in analysis of myocardial perfusion and meta­bolic acti­vity. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2024;(4):12-19

References:

  1. Neuman FJ, Sousa-Uva M, Ahlsson A, et. al. 2018 ESC/EACTS guidelines on myocardial revascularization. European Heart Journal. 2019;40:79-80.  https://doi.org/10.1093/eurheartj/ehy855
  2. Bokeria LA, Miliyevskaya EB, Pryanishnikov VV, et al. Cardiovascular Surgery — 2020. Cardiovascular diseases and congenital anomalies. M.: NCSSH im. A.N. Bakuleva; 2021;294. (In Russ.).
  3. Grebennik VK, Kucherenko VS, Fany H, et al. Prognosis of recurrent angina after CABG. Bulletin of Pirogov National Medical & Surgical Center. 2018;13(3):11-15. (In Russ.). https://doi.org/10.25881/BPNMSC.2018.29.69.002
  4. Cosgrove DM, Loop FD, Lytle BW, et al. Predictors of reoperation after myocardial revascularization. The Journal of Thoracic and Cardiovascular Surgery. 1986;92(5):811-821.  https://doi.org/10.1016/s0022-5223(19)35839-8
  5. Abazid RM, Romsa JG, Akincioglu C, et al. Coronary artery calcium progression after coronary artery bypass grafting surgery. Open Heart. 2021;8:e001684. https://doi.org/10.1136/openhrt-2021-001684
  6. Glineur D, Rahouma M, Grau JB, et al. FFR Cutoff by Arterial Graft Configuration and Location. JACC: Cardiovascular Interventions. 2020;13(1):143-144.  https://doi.org/10.1016/j.jcin.2019.08.013
  7. Doenst T, Haverich A, Serruys P, et al. PCI and CABG for Treating Stable Coronary Artery Disease. JACC Review Topic of the Week. Journal of the American College of Cardiology. 2019;73:964-969.  https://doi.org/10.1016/j.jacc.2018.11.053
  8. Spadaccio C, Antoniades C, Nenna A, et al. Preventing treatment failures in coronary artery disease: What can we learn from the biology of in-stent restenosis, vein graft failure, and internal thoracic arteries? Cardiovascular Research. 2020;116(3):505-519.  https://doi.org/10.1093/cvr/cvz214
  9. Potz BA, Parulkar AB, Abid RM, et al. Novel molecular targets for coronary angiogenesis and ischemic heart disease. Coronary Artery Disease. 2017;28:605-613.  https://doi.org/10.1097/MCA.0000000000000516
  10. Nemyatykh OD, Kovaleva KA. Socio-economic aspects of postoperative drug provision for patients with cardiovascular diseases. Collection of materials of the IV All-Russian scientific practical conference with international participation «Innovations in the health of the nation». November 9—10, 2016. SPb. 2016;445-447. (In Russ.).
  11. Plechev VV, Oleynik BA, Risberg RYu, et al. Novel Opportunities to Stimulate Neoangiogenesis in Rabbits with Acute Myocardial Infarction. Medical Bulletin of Bashkortostan. 2012;7(4):54-57. (In Russ.).
  12. Oleynik BA, Plechev VV, Bayburina GA, et al. 5-Oxymethyluracil Stimulate Neoangiogenesis in Postinfarction Cardiosclerosis Model in Rabbits. Journal of the American College of Cardiology. 2022;79:S15.  https://doi.org/10.1016/j.jacc.2022.03.034
  13. Jafar N, Hussein A. Pyrimidine Derivatives as Promising Candidates for Potent Antiangiogenic: A silico Study. Journal of Contemporary Medical Sciences. 2022;7(6):353-357.  https://doi.org/10.22317/jcms.v7i6.1087
  14. Satterwhite CM, Angela MF, Bradley ME. Chemotactic, mitogenic, and angiogenic actions of UTP on vascular endothelial cells. Am J Physiol. 1999;276(3):1091-1097. https://doi.org/10.1152/ajpheart.1999.276.3.H1091
  15. Van Domburg RT, Kappetein AP, Bogers AJJC. The clinical outcome after coronary bypass surgery: a 30-year follow-up study. European Heart Journal. 2008;30(4):453-458.  https://doi.org/10.1093/eurheartj/ehn530
  16. Adelborg K, Horváth-Puhó E, Schmidt M, et al. Thirty-Year Mortality After Coronary Artery Bypass Graft Surgery. Circulation: Cardiovascular Quality and Outcomes. 2017;10(5). https://doi.org/10.1161/circoutcomes.116.002708
  17. Veldkamp R. Mortality and repeat interventions up until 20 years after aorto-coronary bypass surgery with saphenous vein grafts. A follow-up study of 1041 patients. European Heart Journal. 2000;21(9):747-753.  https://doi.org/10.1053/euhj.1999.1867
  18. Weintraub WS, Clements SD, Crisco LV, et al. Twenty-Year Survival After Coronary Artery Surgery. Circulation. 2003;107(9):1271-1277. https://doi.org/10.1161/01.cir.0000053642.34528.d9
  19. Konstanty-Kalandyk J, Piątek J, Kędziora A, et al. Ten-year follow-up after combined coronary artery bypass grafting and transmyocardial laser revascularization in patients with disseminated coronary atherosclerosis. Lasers in Medical Science. 2018;33(7):1527-1535. https://doi.org/10.1007/s10103-018-2514-9
  20. Hedman M, Muona K, Hedman A, et al. Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Therapy. 2009;16(5):629-634.  https://doi.org/10.1038/gt.2009.4
  21. Rosengart TK, Bishawi MM, Halbreiner MS, et al. Long-Term Follow-Up Assessment of a Phase 1 Trial of Angiogenic Gene Therapy Using Direct Intramyocardial Administration of an Adenoviral Vector Expressing the VEGF121 cDNA for the Treatment of Diffuse Coronary Artery Disease. Human Gene Therapy. 2013;24(2):203-208.  https://doi.org/10.1089/hum.2012.137
  22. Leikas AJ, Hassinen I, Hedman A, et al. Long-term safety and efficacy of intramyocardial adenovirus-mediated VEGF-DΔNΔC gene therapy eight-year follow-up of phase I KAT301 study. Gene Therapy. 2021;29(5):289-293.  https://doi.org/10.1038/s41434-021-00295-1

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.