The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Korotaeva A.A.

Research Centre for Medical Genetics

Borunova A.A.

N.N. Blokhin National Medical Research Center of Oncology

Kuzevanova A.Yu.

Research Centre for Medical Genetics

Zabotina T.N.

N.N. Blokhin National Medical Research Center of Oncology

Alimov A.A.

Research Centre for Medical Genetics

Molecular mechanisms of impaired antigenic presentation as a cause of tumor escape from immune surveillance

Authors:

Korotaeva A.A., Borunova A.A., Kuzevanova A.Yu., Zabotina T.N., Alimov A.A.

More about the authors

Read: 3093 times


To cite this article:

Korotaeva AA, Borunova AA, Kuzevanova AYu, Zabotina TN, Alimov AA. Molecular mechanisms of impaired antigenic presentation as a cause of tumor escape from immune surveillance. Russian Journal of Archive of Pathology. 2023;85(6):76‑83. (In Russ.)
https://doi.org/10.17116/patol20238506176

Recommended articles:
Claudin-18.2 and gastric cancer: from physiology to carcinogenesis. Russian Journal of Archive of Pathology. 2024;(6):92-99

References:

  1. Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, Ahn MJ, Eder JP, Balmanoukian AS, Aggarwal C, Horn L, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J Clin Oncol. 2019;37(28):2518-2527. https://doi.org/10.1200/JCO.19.00934
  2. Goodman AM, Castro A, Pyke RM, Okamura R, Kato S, Riviere P, Frampton G, Sokol E, Zhang X, Ball ED, et al. MHC-I genotype and tumor mutational burden predict response to immunotherapy. Genome Med. 2020;12(1):45.  https://doi.org/10.1186/s13073-020-00743-4
  3. Shklovskaya E, Lee JH, Lim SY, Stewart A, Pedersen B, Ferguson P, Saw RP, Thompson JF, Shivalingam B, Carlino MS, et al. Tumor MHC expression guides first-line immunotherapy selection in melanoma. Cancers (Basel). 2020;12(11):3374. https://doi.org/10.3390/cancers12113374
  4. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12:636568. https://doi.org/10.3389/fimmu.2021.636568
  5. Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers (Basel). 2020;12(7):1760. https://doi.org/10.3390/cancers12071760
  6. Yang Y, Wang Z, Fang J, Yu Q, Han B, Cang S, Chen G, Mei X, Yang Z, Ma R, et al. Efficacy and safety of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC: a randomized, double-blind, phase 3 study (Oncology pRogram by InnovENT anti-PD-1-11). J Thorac Oncol. 2020;15(10):1636-1646. https://doi.org/10.1016/j.jtho.2020.07.014
  7. Antonelli AC, Binyamin A, Hohl TM, Glickman MS, Redelman-Sidi G. Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon-γ signaling. Proc Natl Acad Sci USA. 2020;117(31):18627-18637. https://doi.org/10.1073/pnas.2004421117
  8. Marofi F, Al-Awad AS, Sulaiman Rahman H, Markov A, Abdelbasset WK, Ivanovna Enina Y, Mahmoodi M, Hassanzadeh A, Yazdanifar M, Stanley Chartrand M, et al. CAR-NK cell: a new paradigm in tumor immunotherapy. Front Oncol. 2021;11:673276. https://doi.org/10.3389/fonc.2021.673276
  9. Liu Y, Wang Y, Yang Y, Weng L, Wu Q, Zhang J, Zhao P, Fang L, Shi Y, Wang P. Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther. 2023;8(1):104.  https://doi.org/10.1038/s41392-023-01365-z
  10. Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, George BM, Markovic M, Ring NG, Tsai JM, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 2018;19(1):76-84.  https://doi.org/10.1038/s41590-017-0004-z
  11. Wang Y, Yin C, Feng L, Wang C, Sheng G. Ara-C and anti-CD47 antibody combination therapy eliminates acute monocytic leukemia THP-1 cells in vivo and in vitro. Genet Mol Res. 2015;14(2):5630-5641. https://doi.org/10.4238/2015.May.25.15
  12. Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, et al. Immune checkpoint inhibitors in renal cell carcinoma: molecular basis and rationale for their use in clinical practice. Biomedicines. 2023;11(4):1071. https://doi.org/10.3390/biomedicines11041071
  13. Kwiecień I, Rutkowska E, Raniszewska A, Sokołowski R, Bednarek J, Jahnz-Różyk K, Rzepecki P, Domagała-Kulawik J. Immunosuppressive properties of human PD-1+ , PDL-1+ and CD80 + dendritic cells from lymph nodes aspirates of lung cancer patients. Cancer Immunol Immunother. 2022;71(10):2469-2483. https://doi.org/10.1007/s00262-022-03178-5
  14. Trowsdale J. Genomic structure and function in the MHC. Trends Genet. 1993;9(4):117-122.  https://doi.org/10.1016/0168-9525(93)90205-V
  15. Paul S, Weiskopf D, Angelo MA, Sidney J, Peters B, Sette A. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity and immunogenicity. J Immunol. 2013;191(12):5831-5839. https://doi.org/10.4049/jimmunol.1302101
  16. León-Letelier RA, Katayama H, Hanash S. Mining the immunopeptidome for antigenic peptides in cancer. Cancers (Basel). 2022;14(20):4968. https://doi.org/10.3390/cancers14204968
  17. Shklovskaya E, Rizos H. MHC class I deficiency in solid tumors and therapeutic strategies to overcome it. Int J Mol Sci. 2021;22(13):6741. https://doi.org/10.3390/ijms22136741
  18. Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse signaling by MHC-I molecules in immune and non-immune cell types. Front Immunol. 2020;11:605958. https://doi.org/10.3389/fimmu.2020.605958
  19. Johnson DB, Estrada MV, Salgado R, Sanchez V, Doxie DB, Opalenik SR, Vilgelm AE, Feld E, Johnson AS, Greenplate AR, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582. https://doi.org/10.1038/ncomms10582
  20. Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY. JAK/STAT pathway: extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol. 2023;11:1110765. https://doi.org/10.3389/fbioe.2023.1110765
  21. Mehta AM, Jordanova ES, Kenter GG, Ferrone S, Fleuren GJ. Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. Cancer Immunol Immunother. 2008;57(2):197-206.  https://doi.org/10.1007/s00262-007-0362-8
  22. Cabrera T, Angustias Fernandez M, Sierra A, Garrido A, Herruzo A, Escobedo A, Fabra A, Garrido F. High frequency of altered HLA class I phenotypes in invasive breast carcinomas. Hum Immunol. 1996;50(2):127-134.  https://doi.org/10.1016/0198-8859(96)00145-0
  23. Menon AG, Morreau H, Tollenaar RA, Alphenaar E, Van Puijenbroek M, Putter H, Janssen-Van Rhijn CM, Van De Velde CJ, Fleuren GJ, Kuppen PJ. Down-regulation of HLA-A expression correlates with a better prognosis in colorectal cancer patients. Lab Invest. 2002;82(12):1725-1733. https://doi.org/10.1097/01.lab.0000043124.75633.ed
  24. Park HS, Cho U, Im SY, Yoo CY, Jung JH, Suh YJ, Choi HJ. Loss of human leukocyte antigen class I expression is associated with poor prognosis in patients with advanced breast cancer. J Pathol Transl Med. 2019;53(2):75-85.  https://doi.org/10.4132/jptm.2018.10.11
  25. Kurdi M, Alshareef A, Bamaga AK, Fadel ZT, Alrawaili MS, Hakamy S, Mohamed F, Abuzinadah AR, Addas BMJ, Butt NS. The assessment of major histocompatibility complex (MHC) class-I expression in different neuromuscular diseases. Degener Neurol Neuromuscul Dis. 2021;11:61-68.  https://doi.org/10.2147/DNND.S340117
  26. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E, Iliopoulos D, van den Elsen PJ, Kobayashi KS. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA. 2010;107(31):13794-13799. https://doi.org/10.1073/pnas.1008684107
  27. Kelly A, Trowsdale J. Genetics of antigen processing and presentation. Immunogenetics. 2019;71(3):161-170.  https://doi.org/10.1007/s00251-018-1082-2
  28. Rodríguez T, Méndez R, Del Campo A, Jiménez P, Aptsiauri N, Garrido F, Ruiz-Cabello F. Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer. 2007;7:34.  https://doi.org/10.1186/1471-2407-7-34
  29. Lorenzi S, Forloni M, Cifaldi L, Antonucci C, Citti A, Boldrini R, Pezzullo M, Castellano A, Russo V, van der Bruggen P, et al. IRF1 and NF-kB restore MHC class I-restricted tumor antigen processing and presentation to cytotoxic T cells in aggressive neuroblastoma. PLoS One. 2012;7(10):e46928. https://doi.org/10.1371/journal.pone.0046928
  30. Shi AH, Ho LL, Levine S, Yadav V, Cheah J, Soule C, Frederick DT, Liu D, Boland G, Kellis M. Abstract 948: Epigenomic correlates of checkpoint blockade immunotherapy resistance. Cancer Res. 2019;79(13 suppl.):948.  https://doi.org/10.1158/1538-7445.AM2019-948
  31. Blander JM. Regulation of the cell biology of antigen cross-presentation. Annu Rev Immunol. 2018;36:717-753.  https://doi.org/10.1146/annurev-immunol-041015-055523
  32. Ritz U, Seliger B. The transporter associated with antigen processing (TAP): structural integrity, expression, function, and its clinical relevance. Mol Med. 2001;7(3):149-158.  https://doi.org/10.1007/BF03401948
  33. Ling A, Löfgren-Burström A, Larsson P, Li X, Wikberg ML, Öberg Å, Stenling R, Edin S, Palmqvist R. TAP1 down-regulation elicits immune escape and poor prognosis in colorectal cancer. Oncoimmunology. 20177;6(11):e1356143. https://doi.org/10.1080/2162402X.2017.1356143
  34. Taylor BC, Balko JM. Mechanisms of MHC-I downregulation and role in immunotherapy response. Front Immunol. 2022;13:844866. https://doi.org/10.3389/fimmu.2022.844866
  35. Henle AM, Nassar A, Puglisi-Knutson D, Youssef B, Knutson KL. Downregulation of TAP1 and TAP2 in early stage breast cancer. PloS One. 2017;12(11):e0187323. https://doi.org/10.1371/journal.pone.0187323
  36. Li X, Zeng S, Ding Y, Nie Y, Yang M. Comprehensive analysis of the potential immune-related biomarker transporter associated with antigen processing 1 that inhibits metastasis and invasion of ovarian cancer cells. Front Mol Biosci. 2021;8:763958. https://doi.org/10.3389/fmolb.2021.763958
  37. Wang ZD, Tian X, Wang Y, Wang JJ, Ye SQ, Huang YQ, Qu YY, Chang K, Shi GH, Ye DW, et al. The expression and prognostic value of transporter 1, ATP binding cassette subfamily B member in clear cell renal cell cancer with experimental validation. Front Oncol. 2022;12:1013790. https://doi.org/10.3389/fonc.2022.1013790
  38. Compagnone M, Cifaldi L, Fruci D. Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Hum Immunol. 2019;80(5):318-324.  https://doi.org/10.1016/j.humimm.2019.02.014
  39. Hammer GE, Gonzalez F, James E, Nolla H, Shastri N. In the absence of aminopeptidase ERAAP, C class I molecules present many unstable and highly immunogenic peptides. Nat Immunol. 2007;8(1):101-108.  https://doi.org/10.1038/ni1409
  40. Koumantou D, Barnea E, Martin-Esteban A, Maben Z, Papakyriakou A, Mpakali A, Kokkala P, Pratsinis H, Georgiadis D, Stern LJ, et al. Editing the immunopeptidome of melanoma cells using a potent inhibitor of endoplasmic reticulum aminopeptidase 1 (ERAP1). Cancer Immunol Immunother. 2019;68(8):1245-1261. https://doi.org/10.1007/s00262-019-02358-0
  41. Garrido G, Schrand B, Rabasa A, Levay A, D’Eramo F, Berezhnoy A, Modi S, Gefen T, Marijt K, Doorduijn E, et al. Tumor-targeted silencing of the peptide transporter TAP induces potent antitumor immunity. Nat Commun. 2019;10(1):3773. https://doi.org/10.1038/s41467-019-11728-2
  42. Nagasaki J, Togashi Y, Sugawara T, Itami M, Yamauchi N, Yuda J, Sugano M, Ohara Y, Minami Y, Nakamae H, et al. The critical role of CD4+ T cells in PD-1 blockade against MHC-II-expressing tumors such as classic Hodgkin lymphoma. Blood Adv. 2020;4(17):4069-4082. https://doi.org/10.1182/bloodadvances.2020002098
  43. Oh DY, Kwek SS, Raju SS, Li T, McCarthy E, Chow E, Aran D, Ilano A, Pai CS, Rancan C, et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell. 2020;181(7):1612-1625.e13.  https://doi.org/10.1016/j.cell.2020.05.017
  44. Sacher AG, St Paul M, Paige CJ, Ohashi PS. Cytotoxic CD4+ T cells in bladder cancer — a new license to kill. Cancer Cell. 2020; 38(1):28-30.  https://doi.org/10.1016/j.ccell.2020.06.013
  45. Gonzalez-Ericsson PI, Wulfkhule JD, Gallagher RI, Sun X, Axelrod ML, Sheng Q, Luo N, Gomez H, Sanchez V, Sanders M, et al. Tumor-specific major histocompatibility-II expression predicts benefit to anti-PD-1/L1 therapy in patients with HER2-negative primary breast cancer. Clin Cancer Res. 2021;27(19):5299-5306. https://doi.org/10.1158/1078-0432.CCR-21-0607
  46. Rodig SJ, Gusenleitner D, Jackson DG, Gjini E, Giobbie-Hurder A, Jin C, Chang H, Lovitch SB, Horak C, Weber JS, et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. 2018;10(450):eaar3342. https://doi.org/10.1126/scitranslmed.aar3342
  47. Yi R, Hong S, Zhang Y, Lin A, Ying H, Zou W, Wang Q, Wei T, Cheng Q, Zhu W, et al. MHC-II signature correlates with anti-tumor immunity and predicts anti-PD-L1 response of bladder cancer. Front Cell Dev Biol. 2022;10:757137. https://doi.org/10.3389/fcell.2022.757137
  48. Algarra I, Garrido F, Garcia-Lora AM. MHC heterogeneity and response of metastases to immunotherapy. Cancer Metastasis Rev. 2021;40(2):501-517.  https://doi.org/10.1007/s10555-021-09964-4
  49. Yoshihama S, Cho SX, Yeung J, Pan X, Lizee G, Konganti K, Johnson VE, Kobayashi KS. NLRC5/CITA expression correlates with efficient response to checkpoint blockade immunotherapy. Sci Rep. 2021;11(1):3258. https://doi.org/10.1038/s41598-021-82729-9
  50. Lee JH, Shklovskaya E, Lim SY, Carlino MS, Menzies AM, Stewart A, Pedersen B, Irvine M, Alavi S, Yang JY, et al. Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition. Nat Commun. 2020;11(1):1897. https://doi.org/10.1038/s41467-020-15726-7
  51. Lauss M, Donia M, Harbst K, Andersen R, Mitra S, Rosengren F, Salim M, Vallon-Christersson J, Törngren T, Kvist A, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat Commun. 2017;8(1):1738. https://doi.org/10.1038/s41467-017-01460-0
  52. Khallouf H, Märten A, Serba S, Teichgräber V, Büchler MW, Jäger D, Schmidt J. 5-Fluorouracil and interferon-α immunochemotherapy enhances immunogenicity of murine pancreatic cancer through upregulation of NKG2D ligands and MHC class I. J Immunother. 2012;35(3):245-253.  https://doi.org/10.1097/CJI.0b013e31824b3a76
  53. Wan S, Pestka S, Jubin RG, Lyu YL, Tsai YC, Liu LF. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells. PLoS One. 2012;7(3):e32542. https://doi.org/10.1371/journal.pone.0032542
  54. Iwai T, Sugimoto M, Wakita D, Yorozu K, Kurasawa M, Yamamoto K. Topoisomerase I inhibitor, irinotecan, depletes regulatory T cells and up-regulates MHC class I and PD-L1 expression, resulting in a supra-additive antitumor effect when combined with anti-PD-L1 antibodies. Oncotarget. 2018;9(59):31411-31421. https://doi.org/10.18632/oncotarget.25830
  55. Alagkiozidis I, Facciabene A, Tsiatas M, Carpenito C, Benencia F, Adams S, Jonak Z, June CH, Powell DJ Jr, Coukos G. Time-dependent cytotoxic drugs selectively cooperate with IL-18 for cancer chemo-immunotherapy. J Transl Med. 2011;9:77.  https://doi.org/10.1186/1479-5876-9-77
  56. Tu J, Xu H, Ma L, Li C, Qin W, Chen X, Yi M, Sun L, Liu B, Yuan X. Nintedanib enhances the efficacy of PD-L1 blockade by upregulating MHC-I and PD-L1 expression in tumor cells. Theranostics. 2022;12(2):747-766.  https://doi.org/10.7150/thno.65828
  57. Tsai AK, Khan AY, Worgo CE, Wang LL, Liang Y, Davila E. A multikinase and DNA-PK inhibitor combination immunomodulates melanomas, suppresses tumor progression, and enhances immunotherapies. Cancer Immunol Res. 2017;5(9):790-803.  https://doi.org/10.1158/2326-6066.CIR-17-0009
  58. Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S, Ouyang J, Sasse S, Younes A, Fanale M, Santoro A, et al. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin Lymphoma. J Clin Oncol. 2018;36(10):942-950.  https://doi.org/10.1200/JCO.2017.77.3994

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.