The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Ermolenko K.Yu.

Children’s Research Clinical Center for Infectious Diseases;
St. Petersburg State Pediatric Medical University

Pshenisnov K.V.

Children’s Scientific Clinical Center for Infectious Diseases

Aleksandrovich Yu.S.

Children’s Scientific Clinical Center for Infectious Diseases

Vasilieva Yu.P.

Children’s Research Clinical Center for Infectious Diseases

Cerebral perfusion in children with severe infections of the central nervous system

Authors:

Ermolenko K.Yu., Pshenisnov K.V., Aleksandrovich Yu.S., Vasilieva Yu.P.

More about the authors

Read: 3297 times


To cite this article:

Ermolenko KYu, Pshenisnov KV, Aleksandrovich YuS, Vasilieva YuP. Cerebral perfusion in children with severe infections of the central nervous system. Russian Journal of Anesthesiology and Reanimatology. 2023;(5):32‑39. (In Russ., In Engl.)
https://doi.org/10.17116/anaesthesiology202305132

Recommended articles:
Intracranial hype­rtension in hemo­rrhagic stroke: a single-center retrospective study. Russian Journal of Anesthesiology and Reanimatology. 2024;(6):23-29
Robot-assisted ovarian tera­toma rese­ction. Endo­scopic Surgery. 2024;(5):54-58
Epidemiology of suicidal beha­vior in children and adolescents worldwide. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):16-26
Diagnosis of neuroinfections in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):51-59
Modern approaches to diagnosis and treatment of syndrome of auto­nomic dysfunction in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):66-75
Inte­rnal hernias stra­ngulated in mese­nteric openings in young children. Piro­gov Russian Journal of Surgery. 2024;(11):54-59

References:

  1. Pshenisnov KV, Aleksandrovich YuS. Epidemiology of critical conditions in children of the metropolis. Anesteziologiya i Reanimatologiya. 2017;62(6):463-467. (In Russ.).
  2. Aleksandrovich YuS, Pshenisnov KV, Gordeev VI. Intensivnaya terapiya kriticheskikh sostoyanij u detej. SPb: Izd-vo N-L; 2014. (In Russ.).
  3. Pshenisnov KV. Hemodynamic support in children with severe traumatic lesions of the central nervous system. Meditsina: teoriya i praktika. 2018;3(4):160-164. (In Russ.).
  4. Atiskov YuA, Akshulakov SK, Belkin AA, Kondratiev AN, Larionov SN, Nazaralieva ET, Riznich VP, Savvina IA, Safin ISh, Khachatryan VA. Craniospinal compliance — new principles for intracranial pressure monitoring. Anesteziologiya i Reanimatologiya. 2020;(6):37-43. (In Russ.). https://doi.org/10.17116/anaesthesiology202006137
  5. Komantsev VN, Skripchenko NV, Voitenkov VB, Savina MV, Ivanova GP. Evoked potentials of the brain in neuroinfections in children. Zhurnal infektologii. 2013;5(2):55-62. (In Russ.).
  6. Patent RF na izobretenie №2755648/17.09.21 Byull. №26. Vasilieva YuP, Klimkin AV, Skripchenko NV, Ostapenko BV. Sposob diagnostiki stadii vnutricherepnoj gipertenzii pri nejroinfektsiyakh u detej v ostrom periode. (In Russ.). Accessed July 28, 2023. https://patents.google.com/patent/RU2755648C1/ru
  7. Dewey R, Pierer H, Hunt W. Experimental cerebral hemodynamics. Vasomotor tone, critical closing pressure, and vascular bed resistance. Journal of Neurosurgery. 1974;41(5):597-606.  https://doi.org/10.3171/jns.1974.41.5.0597
  8. Kasprowicz M. [Assessment of cerebral hemodynamics based on pulse waveform analysis of intracranial pressure, arterial blood pressure and cerebral blood flow]. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej; 2012.
  9. Kasprowicz M, Diedler J, Reinhard M, Carrera E, Steiner LA, Smielewski P, Budohoski KP, Haubrich C, Pickard JD, Czosnyka M. Time constant of the cerebral arterial bed in normal subjects. Ultrasound in Medicine and Biology. 2012;38(7):1129-1137. https://doi.org/10.1016/j.ultrasmedbio.2012.02.014
  10. Rosin YuA. Cerebral hemodynamics in intracranial hypertension in children with bacterial purulent meningitis. Pediatr. 2011;2(3):32-34. (In Russ.).
  11. Westermaier T, Pham M, Stetter C, Willner N, Solymosi L, Ernestus RI, Vince GH, Kunze E. Value of transcranial Doppler, perfusion-CT and neurological evaluation to forecast secondary ischemia after aneurysmal SAH. Neurocritical Care. 2014;20(3):406-412.  https://doi.org/10.1007/s12028-013-9896-0
  12. Sharples PM, Matthews DS, Eyre JA. Cerebral blood flow and metabolism in children with severe head injuries. Part 2: cerebrovascular resistance and its determinants. Journal of Neurology, Neurosurgery, and Psychiatry. 1995;58(2):153-159.  https://doi.org/10.1136/jnnp.58.2.153
  13. Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacology and Therapeutics. 2005;105(1):23-56.  https://doi.org/10.1016/j.pharmthera.2004.10.002
  14. Siemkowicz E. Cerebrovascular resistance in ischemia. Pflugers Archiv. 1980;388(3):243-247.  https://doi.org/10.1007/BF00658489
  15. Bhogal P, Yeo LL, Müller LO, Blanco PJ. The effects of cerebral vasospasm on cerebral blood flow and the effects of induced hypertension: a mathematical modelling study. Interventional Neurology. 2020;8(2-6):152-163.  https://doi.org/10.1159/000496616
  16. Ostapenko BV, Voitenkov VB, Marchenko NV, Skripchenko NV, Vasilieva YuP, Klimkin AV, Bedova MA. Modern techniques for intracranial pressure monitoring. Meditsina ekstremal’nykh situatsij. 2019;21(4):472-485. (In Russ.).
  17. Tasker RC. Raised intracranial pressure during CNS infection: what should we do about it? Critical Care Medicine. 2014;42(8):1936-1938. https://doi.org/10.1097/CCM.0000000000000419
  18. Kumar R, Singhi S, Singhi P, Jayashree M, Bansal A, Bhatti A. Randomized controlled trial comparing cerebral perfusion pressure-targeted therapy versus intracranial pressure-targeted therapy for raised intracranial pressure due to acute CNS infections in children. Critical Care Medicine. 2014;42(8):1775-1787. https://doi.org/10.1097/CCM.0000000000000298
  19. Shetty R, Singhi S, Singhi P, Jayashree M. Cerebral perfusion pressure — targeted approach in children with central nervous system infections and raised intracranial pressure: is it feasible? Journal of Child Neurology. 2008;23(2):192-198.  https://doi.org/10.1177/0883073807308716
  20. Israilova VK, Abdymoldaeva ZhA, Kulmurat MA. Neuromonitoring (Invos monitor) in patients with stroke. Vestnik Kazakhskogo natsional’nogo meditsinskogo universiteta. 2015;4:343-346. (In Russ.).
  21. Goitein KJ, Amit Y, Mussaffi H. Intracranial pressure in central nervous system infections and cerebral ischaemia of infancy. Archives of Disease in Childhood. 1983;58(3):184-186.  https://doi.org/10.1136/adc.58.3.184
  22. Møller K, Larsen FS, Qvist J, Wandall JH, Knudsen GM, Gjørup IE, Skinhøj P. Dependency of cerebral blood flow on mean arterial pressure in patients with acute bacterial meningitis. Critical Care Medicine. 2000;28(4):1027-1032. https://doi.org/10.1097/00003246-200004000-00019
  23. Paulson OB, Brodersen P, Hansen EL, Kristensen HS. Regional cerebral blood flow, cerebral metabolic rate of oxygen, and cerebrospinal fluid acid-base variables in patients with acute meningitis and with acute encephalitis. Acta Medica Scandinavica. 1974;196(3):191-198.  https://doi.org/10.1111/j.0954-6820.1974.tb00994.x
  24. Tariq A, Aguilar-Salinas P, Hanel RA, Naval N, Chmayssani M. The role of ICP monitoring in meningitis. Neurosurgical Focus. 2017;43(5):E7.  https://ddoi.org/10.3171/2017.8.FOCUS17419
  25. Oshorov AV, Goryachev AS, Popugaev KA, Polupan AA, Savin IA, Lubnin AYu. Monitoring of cerebral perfusion pressure in intensive care (literature review). Vestnik anesteziologii i reanimatologii. 2013;10(2):052-059. (In Russ.).
  26. Goldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatric Critical Care Medicine. 2005;6(1):2-8.  https://doi.org/10.1097/01.PCC.0000149131.72248.E6
  27. McIntosh AM, Tong S, Deakyne SJ, Davidson JA, Scott HF. Validation of the vasoactive-inotropic score in pediatric sepsis. Pediatric Critical Care Medicine. 2017;18(8):750-757.  https://doi.org/10.1097/PCC.0000000000001191
  28. Aleksandrovich YuS, Pshenisnov KV. Application inotropic and vasoactive drugs in critical conditions newborns. Rossijskij vestnik detskoj khirurgii, anesteziologii i reanimatologii. 2011;3:106-112. (In Russ.).
  29. Likhvantsev VV, Yadgarov MYa, Berikashvili LB, Kadantseva KK, Kuzovlev AN. Sample size estimation. Anesteziologiya i Reanimatologiya. 2020;(6):77-86. (In Russ.). https://doi.org/10.17116/anaesthesiology202006177
  30. Kuzovlev AN, Yadgarov MYa, Berikashvili LB, Ryabova EV, Goncharova DD, Perekhodov SN, Likhvantsev VV. Choosing the right statistical test. Anesteziologiya i Reanimatologiya. 2021;(3):88-93. (In Russ.). https://doi.org/10.17116/anaesthesiology202103188
  31. Vasilyeva YuP, Skripchenko NV, Klimkin AV, Bedova MA, Levina OA, Ostapenko BV. A comprehensive structural and functional approach to non-invasive diagnosis of intracranial hypertension and its degree in meningitis and encephalitis in children. Prakticheskaya meditsina. 2022;20(1):56-66. (In Russ.). https://doi.org/10.32000/2072-1757-2022-1-56-66
  32. Dong J, Li Q, Wang X, Fan Y. A review of the methods of non-invasive assessment of intracranial pressure through ocular measurement. Bioengineering. 2022;9(7):304.  https://doi.org/10.3390/bioengineering9070304
  33. Li J, Wan C. Non-invasive detection of intracranial pressure related to the optic nerve. Quantitative Imaging in Medicine and Surgery. 2021;11(6):2823-2836. https://doi.org/10.21037/qims-20-1188
  34. Andreytseva MI, Petrikov SS, Khamidova LT, Solodov AA. Ultrasound examination of the structures of the optic nerve canal in the diagnosis of intracranial hypertension in patients with intracranial hemorrhages. Zhurnal im. N.V. Sklifosovskogo. Neotlozhnaja meditsinskaya pomoshch’. 2018;7(4):349-356. (In Russ.). https://doi.org/10.23934/2223-9022-2018-74-349-356
  35. Philip S, Chaiwat O, Udomphorn Y, Moore A, Zimmerman JJ, Armstead W, Vavilala MS. Variation in cerebral blood flow velocity with cerebral perfusion pressure >40 mm Hg in 42 children with severe traumatic brain injury. Critical Care Medicine. 2009;37(11):2973-2978. https://doi.org/10.1097/CCM.0b013e3181a963f6
  36. Grände PO, Nordström CH. Management of CPP/ICP: The Lund concept. European Journal of Anaesthesiology. 1998;15:42-43. 
  37. Singh Y, Villaescusa JU, da Cruz EM, Tibby SM, Bottari G, Saxena R, Guillén M, Herce JL, Di Nardo M, Cecchetti C, Brierley J, de Boode W, Lemson J. Recommendations for hemodynamic monitoring for critically ill children-expert consensus statement issued by the cardiovascular dynamics section of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Critical Care. 2020;24(1):620.  https://doi.org/10.1186/s13054-020-03326-2
  38. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. Journal of Neurosurgery. 1995;83(6):949-962.  https://doi.org/10.3171/jns.1995.83.6.0949
  • Merz TM, Regli B, Rothen HU, Felleiter P. Propofol infusion syndrome: a fatal case at a low infusion rate. Anesthesia and Analgesia. 2006;103(4):1050. https://doi.org/10.1213/01.ane.0000239080.82501.c7
  • Chukwuemeka A, Ko R, Ralph-Edwards A. Short-term low-dose propofol anaesthesia associated with severe metabolic acidosis. Anesthesia and Intensive Care. 2006;34(5):651-655.  https://doi.org/10.1177/0310057X0603400503
  • Roberts RJ, Barletta JF, Fong JJ, Schumaker G, Kuper PJ, Papadopoulos S, Yogaratnam D, Kendall E, Xamplas R, Gerlach AT, Szumita PM, Anger KE, Arpino PA, Voils SA, Grgurich P, Ruthazer R, Devlin JW.Incidence of propofol-related infu- sion syndrome in critically ill adults: A prospective, multicenter study. Critical Care. 2009;13(5):169.  https://doi.org/10.1186/cc8145
  • Barr J, Zomorodi K, Bertaccini EJ, Shafer SL, Geller E. A double-blind, randomized comparison of i.v.lorazepam versus midazolam for sedation of ICU patients via a pharmacologic model. Anesthesiology. 2001;95(2):286-298.  https://doi.org/10.1097/00000542-200108000-00007
  • Shafer A. Complications of sedation with midazolam in the intensive care unit and a comparison with other sedative regimens. Critical Care Medicine. 1998;26(5):947-956.  https://doi.org/10.1097/00003246-199805000-00034
  • Swart EL, Zuideveld KP, de Jongh J, Danhof M, Thijs LG, Strack van Schijndel RM. Population pharmacodynamics modelling of lorazepam- and midazolam-induced sedation upon long-term continuous infusion in critically ill patients. European Journal of Clinical Pharmacology. 2006;62(3):185-194.  https://doi.org/10.1007/s00228-005-0085-8
  • Swart EL, de Jongh J, Zuideveld KP, Danhof M, Thijs LG, Strack van Schijndel RJ. Population pharmacokinetics of lorazepam and midazolam and their metabolites in intensive care patients on continuous veno-venous hemofiltration. American Journal of Kidney Diseases. 2005;45(2):360-371.  https://doi.org/10.1053/j.ajkd.2004.09.004
  • Swart EL, Zuideveld KP, de Jongh J, Danhof M, Thijs LG, Strack van Schijndel RM. Comparative population pharmacokinetics of lorazepam and midazolam during long-term continuous infusion in critically ill patients. British Journal of Clinical Pharmacology. 2004;57(2):145.  https://doi.org/10.1046/j.1365-2125.2003.01957.x
  • Ariano RE, Kassum DA, Aronson KJ. Comparison of sedative recovery time after midazolam versus diazepam administration. Critical Care Medicine. 1994;22(9):1492-1496. https://doi.org/10.1097/00003246-199409000-00022
  • Garcia R, Salluh JIF, Andrade TR, Farah D, da Silva PSL, Bastos DF, Fonseca MCM. A systematic review and meta-analysis of propofol versus midazolam sedation in adult intensive care (ICU) patients. Journal of Critical Care. 2021;64:91-99.  https://doi.org/10.1016/j.jcrc.2021.04.001
  • Buckley MS, Smithburger PL, Wong A, Fraser GL, Reade MC, Klein-Fedyshin M. Dexmedetomidine for facilitating mechanical ventilation extubation in difficult-to-wean ICU patients: systematic review and meta-analysis of clinical trials. Journal of Intensive Care Medicine. 2020;6:885066620937673. https://doi.org/10.1177/0885066620937673
  • Chen P, Jiang J, Zhang Y, Li G, Qiu Z, Levy MM, Hu B. Effect of dexmedetomidine on duration of mechanical ventilation in septic patients: a systematic review and meta-analysis. BMC Pulmonary Medicine. 2020;20(1):42.  https://doi.org/10.1186/s12890-020-1065-6
  • Hughes CG, Mailloux PT, Devlin JW, Swan JT, Sanders RD, Anzueto A, Jackson JC, Hoskins AS, Pun BT, Orun OM, Raman R, Stollings JL, Kiehl AL, Duprey MS, Bui LN, O’Neal HR Jr, Snyder A, Gropper MA, Guntupalli KK, Stashenko GJ, Patel MB, Brummel NE, Girard TD, Dittus RS, Bernard GR, Ely EW, Pandharipande PP; MENDS2 Study Investigators. Dexmedetomidine or Propofol for Sedation in Mechanically Ventilated Adults with Sepsis. New England Journal of Medicine. 2021;384(15):1424-1436. https://doi.org/10.1056/NEJMoa2024922
  • Heybati K, Zhou F, Ali S, Deng J, Mohananey D, Villablanca P, Ramakrishna H. Outcomes of dexmedetomidine versus propofol sedation in critically ill adults requiring mechanical ventilation: a systematic review and meta-analysis of randomised controlled trials. British Journal of Anaesthesia. 2022;129(4):515-526.  https://doi.org/10.1016/j.bja.2022.06.020
  • Patel SB, Kress JP. Sedation and Analgesia in the Mechanically Ventilated Patient. American journal of respiratory and Critical Care Medicine. 2012;185(5):486-497.  https://doi.org/10.1164/rccm.201102-0273CI
  • Zhou Y, Jin X, Kang Y, Liang G, Liu T, Deng N. Midazolam and propofol used alone or sequentially for long-term sedation in critically ill, mechanically ventilated patients: A prospective, randomized study. Critical Care. 2014;18(3):R122. https://doi.org/10.1186/cc13922
  • Casault C, Soo A, Lee CH. Sedation strategy and ICU delirium: a multicentre, population-based propensity score-matched cohort study. BMJ Open. 2021;11:e045087. https://doi.org/10.1136/bmjopen-2020-045087
  • Huey-Ling L, Chun-Che S, Jen-Jen T, Shau-Ting L, Hsing-I C. Comparison of the effect of protocol-directed sedation with propofol vs. Midazolam by nurses in intensive care: Efficacy, haemodynamic stability and patient satisfaction. Journal of Clinical Nursing. 2008;17(11):1510-1517. https://doi.org/10.1111/j.1365-2702.2007.02128.x
  • Mesnil M, Capdevila X, Bringuier S, Trine PO, Falquet Y, Charbit J, Roustan JP, Chanques G, Jaber S. Long-term sedation in intensive care unit: A randomized comparison between inhaled sevoflurane and intravenous propofol or midazolam. Intensive Care Medicine. 2011;37(6):933-941.  https://doi.org/10.1007/s00134-011-2187-3
  • Srivastava VK, Agrawal S, Kumar S, Mishra A, Sharma S, Kumar R. Comparison of dexmedetomidine, propofol and midazolam for short-term sedation in postoperatively mechanically ventilated neurosurgical patients. Journal of Clinical and Diagnostic Research. 2014;8:GC04GC07. https://doi.org/10.7860/JCDR/2014/8797.4817
  • Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, Koami H, Beppu S, Katayama Y, Itoh M, Ohta Y, Yamamura H; Dexmedetomidine for Sepsis in Intensive Care Unit Randomized Evaluation (DESIRE) Trial Investigators. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis a randomized clinical trial. JAMA. 2017;317(13):1321-1327. https://doi.org/10.1001/jama.2017.2088
  • Reade MC, Eastwood GM, Bellomo R, Bailey M, Bersten A, Cheung B, Davies A, Delaney A, Ghosh A, van Haren F, Harley N, Knight D, McGuiness S, Mulder J, O’Donoghue S, Simpson N, Young P; DahLIA Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial. JAMA. 2016;315(14):1460-1468. https://doi.org/10.1001/jama.2016.2707
  • Farina N, Alaniz C. Reconsidering Dexmedetomidine for Sedation in the Critically Ill: Implications of the SPICE III Trial. Annals of Pharmacotherapy. 2020;54(5):504-508.  https://doi.org/10.1177/1060028019890672
  • Møller MH, Alhazzani W, Lewis K, Belley-Cote E, Granholm A, Centofanti J, McIntyre WB, Spence J, Al Duhailib Z, Needham DM, Evans L, Reintam Blaser A, Pisani MA, D’Aragon F, Shankar-Hari M, Alshahrani M, Citerio G, Arora RC, Mehta S, Girard TD, Ranzani OT, Hammond N, Devlin JW, Shehabi Y, Pandharipande P, Ostermann M. Use of dexmedetomidine for sedation in mechanically ventilated adult ICU patients: a rapid practice guideline. Intensive Care Medicine. 2022;48(7):801-810.  https://doi.org/10.1007/s00134-022-06660-x
  • Mulkey MA, Everhart DE. Sedation selection to reduce delirium risk: Why dexmedetomidine may be a better choice. Journal of the American Association of Nurse Practitioners. 2020;33(4):266-270.  https://doi.org/10.1097/JXX.0000000000000364
  • Nelson KM, Patel GP, Hammond DA. Effects from continuous infusions of dexmedetomidine and propofol on hemodynamic stability in critically ill adult patients with septic shock. Journal of Intensive Care Medicine. 2020:35(9):875-880.  https://doi.org/10.1177/0885066618802269
  • Chang YF, Chao A, Shih PY, Hsu YC, Lee CT, Tien YW, Yeh YC, Chen LW; NTUH Center of Microcirculation Medical Research (NCMMR). Comparison of dexmedetomidine versus propofol on hemodynamics in surgical critically ill patients. The Journal of Surgical Research. 2018;228:194-200.  https://doi.org/10.1016/j.jss.2018.03.040
  • Owusu KA, Kurczewski L, Armahizer MJ, Zichichi A, Maciel CB, Heavner MS. DEXmedetomidine compared to PROpofol in NEurocritical Care [DEXPRONE]: A multicenter retrospective evaluation of clinical utility and safety. Journal of Critical Care. 2020;60:79-83.  https://doi.org/10.1016/j.jcrc.2020.07.021
  • Wang G, Niu J, Li Z, Lv H, Cai H. The efficacy and safety of dexmedetomidine in cardiac surgery patients: a systematic review and meta-analysis. PLoS One. 2018;13(9):e0202620. https://doi.org/10.1371/journal.pone.0202620
  • Lin Y, He B, Chen J, Wang Z. Can dexmedetomidine be a safe and efficacious sedative agent in post-cardiac surgery patients? A meta-analysis. Critical Care. 2012;16(5):R169. https://doi.org/10.1186/cc11646
  • Brock L. Dexmedetomidine in Adult Patients in Cardiac Surgery Critical Care: An Evidence-Based Review. AACN Advanced Critical Care. 2019;30(3):259-268.  https://doi.org/10.4037/aacnacc2019888
  • Maldonado JR, Wysong A, van der Starre PJ, Block T, Miller C, Reitz BA. Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics. 2009;50(3):206-217.  https://doi.org/10.1176/appi.psy.50.3.206
  • Djaiani G, Silverton N, Fedorko L, Carroll J, Styra R, Rao V, Katznelson R. Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial. Anesthesiology. 2016;124(2):362-368.  https://doi.org/10.1097/ALN.0000000000000951
  • Smithburger PL, Patel MK. Pharmacologic Considerations Surrounding Sedation, Delirium, and Sleep in Critically Ill Adults: A Narrative Review. Journal of Pharmacy Practice. 2019;32(3):271-291.  https://doi.org/10.1177/0897190019840120
  • Allam MG. Dexmedetomidine versus midazolam for sedation of critically ill patients on noninvasive mechanical ventilation. Ain-Shams Journal of Anaesthesiology. 2016;9(2):178-185.  https://doi.org/10.4103/1687-7934.179910
  • Huang Z, Chen YS, Yang ZL, Liu JY. Dexmedetomidine versus midazolam for the sedation of patients with noninvasive ventilation failure. Internal Medicine. 2012;51(17):2299-2305. https://doi.org/10.2169/internalmedicine.51.7810
  • Karim HM, Šarc I, Calandra C, Spadaro S, Mina B, Ciobanu LD, Gonçalves G, Caldeira V, Cabrita B, Perren A, Fiorentino G, Utku T, Piervincenzi E, El-Khatib M, Alpay N, Ferrari R, Abdelrahim ME, Saeed H, Madney YM, Harb HS, Vargas N, Demirkiran H, Bhakta P, Papadakos P, Gómez-Ríos MÁ, Abad A, Alqahtani JS, Hadda V, Singha SK, Esquinas AM. Role of Sedation and Analgesia during Noninvasive Ventilation: Systematic Review of Recent Evidence and Recommendations. Indian Journal of Critical Care Medicine. 2022;26(8):938-948.  https://doi.org/10.5005/jp-journals-10071-23950
  • De Hert SG, Van der Linden PJ, Cromheecke S, Meeus R, Nelis A, Van Reeth V, ten Broecke PW, De Blier IG, Stockman BA, Rodrigus IE. Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology. 2004;101(2):299-310.  https://doi.org/10.1097/00000542-200408000-00009
  • Hellström J, Öwall A, Bergström J, Sackey PV. Cardiac outcome after sevoflurane versus propofol sedation following coronary bypass surgery: a pilot study. Acta Anaesthesiologica Scandinavica. 2011;55(4):460-467.  https://doi.org/10.1111/j.1399-6576.2011.02405.x
  • Soro M, Gallego L, Silva V, Ballester MT, Lloréns J, Alvariño A, García-Perez ML, Pastor E, Aguilar G, Martí FJ, Carratala A, Belda FJ. Sevoflurane and propofol during anaesthesia and the postoperative period in coronary bypass graft surgery: a double- blind randomised study. European Journal of Anaesthesiology. 2012;29(12):561-569.  https://doi.org/10.1097/EJA.0b013e3283560aea
  • Bellgardt M, Bomberg H, Herzog-Niescery J, Dasch B, Vogelsang H, Weber TP, Steinfort C, Uhl W, Wagenpfeil S, Volk T, Meiser A. Survival after long-term isoflurane sedation as opposed to intravenous sedation in critically ill surgical patients. European Journal of Anaesthesiology. 2015;32(1):6-13.  https://doi.org/10.1097/EJA.0000000000000252
  • Soro M, Belda FJ, Badenes R, Alcantara MJ. Use of the AnaConDa (Anestesia Conserving Device) with sevoflurane in critical care patients. European Journal of Anaesthesiology. 2004;21(Suppl 32):708.  https://doi.org/10.1097/00003643-200406002-00631
  • Jerath A, Beattie SW, Chandy T, Karski J, Djaiani G, Rao V, Yau T, Wasowicz M. Volatile-based short-term sedation in cardiac surgical patients: a prospective randomized controlled trial. Critical Care Medicine. 2015;43(5):1062-1069. https://doi.org/10.1097/CCM.0000000000000938
  • Martin J, Heymann A, Bäsell K, Baron R, Biniek R, Bürkle H, Dall P, Dictus C, Eggers V, Eichler I, Engelmann L, Garten L, Hartl W, Haase U, Huth R, Kessler P, Kleinschmidt S, Koppert W, Kretz FJ, Laubenthal H, Marggraf G, Meiser A, Neugebauer E, Neuhaus U, Putensen C, Quintel M, Reske A, Roth B, Scholz J, Schröder S, Schreiter D, Schüttler J, Schwarzmann G, Stingele R, Tonner P, Tränkle P, Treede RD, Trupkovic T, Tryba M, Wappler F, Waydhas C, Spies C. Evidence and consensus-based German guidelines for the management of analgesia, sedation and delirium in intensive care — short version. German Medical Science. 2010;8:Doc02. https://doi.org/10.3205/000091
  • Kim HY, Lee JE, Kim HY, Kim J. Volatile sedation in the intensive care unit:A systematic review and meta-analysis. Medicine. 2017;96(49):e8976. https://doi.org/10.1097/MD.0000000000008976
  • Meiser A, Volk T, Wallenborn J, Guenther U, Becher T, Bracht H, Schwarzkopf K, Knafelj R, Faltlhauser A, Thal SC, Soukup J, Kellner P, Drüner M, Vogelsang H, Bellgardt M, Sackey P; Sedaconda study group. Inhaled isofurane via the anaesthetic conserving device versus propofol for sedation of invasively ventilated patients in intensive care units in Germany and Slovenia: an open-label, phase 3, randomised controlled, non-inferiority trial. The Lancet. Respiratory Medicine. 20219(11):1231-1240. https://doi.org/10.1016/S2213-2600(21)00323-4
  • Blondonnet R, Balde A, Zhai R, Pereira B, Futier E, Bazin J-E, Use of volatile anesthetics for sedation in the ICU during the COVID-19 pandemic: A national survey in France (VOL’ICU 2 study). PLoS One. 2022;17(12):e0278090. https://doi.org/10.1371/journal.pone.0278090
  • Fraser GL, Devlin JW, Worby CP, Alhazzani W, Barr J, Dasta JF, Kress JP, Davidson JE, Spencer FA. Benzodiazepine versus nonbenzodiazepine-based sedation for mechanically ventilated, critically ill adults: a systematic review and meta-analysis of randomized trials. Critical Care Medicine. 2013;41(9):30-38.  https://doi.org/10.1097/CCM.0b013e3182a16898
  • Jung S, Na S, Kim HB, Joo HJ, Kim J. Inhalation sedation for postoperative patients in the intensive care unit: initial sevoflurane concentration and comparison of opioid use with propofol sedation. Acute Critical Care. 2020;35(3):197-204.  https://doi.org/10.4266/acc.2020.00213
  • Jerath A, Slessarev M. The impact of the coronavirus pandemic on sedation in critical care: volatile anesthetics in the ICU. Current Opinion in Critical Care. 2023;29(1):14-18.  https://doi.org/10.1097/MCC.0000000000001011
  • Burov NE. Ideas about the mechanism of anesthetic and therapeutic properties of xenon. Anesteziologiya i Reanimatologiya. 2011;2:58-62. (In Russ.).
  • Stryapko NV, Sazontova TG, Potievskaya VI, Molchanov IV. Adaptive effect of repeated use of xenon. Obshchaya reanimatologiya. 2014;10(2):50-56. (In Russ.).
  • Liu W, Liu Y, Chen H, Liu K, Tao H, Sun X. Xenon preconditioning: molecular mechanisms and biological effects. Medical Gas Research. 2013;3(1):3.  https://doi.org/10.1186/2045-9912-3-3
  • Molchanov IV, Potievskaya VI, Pulina NN, Shebzukhova EKh. Treatment of patients with acute coronary syndrome by xenon inhalation. Doctor.Ru. 2012;10(78):35-40. (In Russ.).
  • Lakhin RE, Andreenko AA, Vlasenko AV, Martynov DV, Lazarev VV, Ovezov AM, Gorbachev VI, Leiderman IN, Belkin AA, Fischer VV, Lomivorotov VV, Kuzkov VV, Shifman EM, Grigoriev EV, Popov AS, Magomedov MA, Yaroshetsky AI. Modified Delphic analysis of the provisions and quality criteria of methodological recommendations «Sedation of patients in departments of anesthesiology, intensive care and intensive care». Vestnik intensivnoj terapii im. A.I. Saltanova. 2023;(2):45-54. (In Russ.). https://doi.org/10.21320/1818-474X-2023-2-45-54
  • Email Confirmation

    An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

    Email Confirmation

    We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.