The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Cherkasov N.S.

Mental Health Research Center

Tomyshev A.S.

Mental Health Research Center

Lebedeva I.S.

Mental Health Research Center

Abdullina E.G.

Mental Health Research Centre

Bozhko O.V.

Mental Health Research Center

Gavrilova S.I.

Mental Health Research Centre

Kolykhalov I.V.

Mental Health Research Center

Structural features of the brain in amnestic mild cognitive impairment and their correlation with mild behavioral impairment

Authors:

Cherkasov N.S., Tomyshev A.S., Lebedeva I.S., Abdullina E.G., Bozhko O.V., Gavrilova S.I., Kolykhalov I.V.

More about the authors

Read: 776 times


To cite this article:

Cherkasov NS, Tomyshev AS, Lebedeva IS, Abdullina EG, Bozhko OV, Gavrilova SI, Kolykhalov IV. Structural features of the brain in amnestic mild cognitive impairment and their correlation with mild behavioral impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(6):112‑119. (In Russ.)
https://doi.org/10.17116/jnevro2025125061112

Recommended articles:
Differential diagnosis of Alzheimer’s disease and vascular cognitive diso­rders. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):26-35

References:

  1. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia. 2011;7(3):280-292.  https://doi.org/10.1016/j.jalz.2011.03.003
  2. Cherkasov NS, Kolykhalov IV. Non-cognitive psychopathological symptoms in mild cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(10-2):41-51. (In Russ.). https://doi.org/10.17116/jnevro202112110241
  3. Ismail Z, Agüera-Ortiz L, Brodaty H, et al. The Mild Behavioral Impairment Checklist (MBI-C): A Rating Scale for Neuropsychiatric Symptoms in Pre-Dementia Populations. Journal of Alzheimer’s Disease. 2017;56(3):929-938.  https://doi.org/10.3233/jad-160979
  4. Matsuoka T, Ismail Z, Narumoto J, et al. Prevalence of Mild Behavioral Impairment and Risk of Dementia in a Psychiatric Outpatient Clinic. Journal of Alzheimer’s Disease. 2019;70(2):505-513.  https://doi.org/10.3233/jad-190278
  5. Creese B, Ismail Z. Mild behavioral impairment: measurement and clinical correlates of a novel marker of preclinical Alzheimer’s disease. Alzheimer’s Research & Therapy. 2022;14(1). https://doi.org/10.1186/s13195-021-00949-7
  6. Jack CR, Andrews JS, Beach TG, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimer’s & Dementia. 2024;20(8):5143-5169. https://doi.org/10.1002/alz.13859
  7. Taragano FE, Allegri RF, Krupitzki H, et al. Mild Behavioral Impairment and Risk of Dementia. The Journal of Clinical Psychiatry. 2009;70(4):584-592.  https://doi.org/10.4088/JCP.08m04181
  8. Taragano FE, Allegri RF, Heisecke SL, et al. Risk of Conversion to Dementia in a Mild Behavioral Impairment Group Compared to a Psychiatric Group and to a Mild Cognitive Impairment Group. Journal of Alzheimer’s Disease. 2018;62(1):227-238.  https://doi.org/10.3233/jad-170632
  9. Yoon EJ, Lee J-Y, Kwak S, et al. Mild behavioral impairment linked to progression to Alzheimer’s disease and cortical thinning in amnestic mild cognitive impairment. Frontiers in Aging Neuroscience. 2023;14:1051621. https://doi.org/10.3389/fnagi.2022.1051621
  10. Ismail Z, McGirr A, Gill S, et al. Mild Behavioral Impairment and Subjective Cognitive Decline Predict Cognitive and Functional Decline. Journal of Alzheimer’s Disease. 2021;80(1):459-469.  https://doi.org/10.3233/jad-201184
  11. Matsuoka T, Imai A, Narumoto J. Neuroimaging of mild behavioral impairment: A systematic review. Psychiatry and Clinical Neurosciences Reports. 2023;2(1):e81.  https://doi.org/10.1002/pcn5.81
  12. Zhang J, Liu Y, Lan K, et al. Gray Matter Atrophy in Amnestic Mild Cognitive Impairment: A Voxel-Based Meta-Analysis. Frontiers in Aging Neuroscience. 2021;13.  https://doi.org/10.3389/fnagi.2021.627919
  13. Gao S-L, Yue J, Li X-L, et al. Multimodal magnetic resonance imaging on brain network in amnestic mild cognitive impairment: A mini-review. Medicine. 2023;102(34):e34994. https://doi.org/10.1097/md.0000000000034994
  14. Miao R, Chen H-Y, Robert P, et al. White matter hyperintensities and mild behavioral impairment: Findings from the MEMENTO cohort study. Cerebral Circulation — Cognition and Behavior. 2021;2:100028. https://doi.org/10.1016/j.cccb.2021.100028
  15. Raine PJ, Rao H. Volume, density, and thickness brain abnormalities in mild cognitive impairment: an ALE meta-analysis controlling for age and education. Brain Imaging and Behavior. 2022;16(5):2335-2352. https://doi.org/10.1007/s11682-022-00659-0
  16. Chen S, Xu W, Xue C, et al. Voxelwise Meta-Analysis of Gray Matter Abnormalities in Mild Cognitive Impairment and Subjective Cognitive Decline Using Activation Likelihood Estimation. Journal of Alzheimer’s Disease. 2020;77(4):1495-1512. https://doi.org/10.3233/jad-200659
  17. Stulov IK, Ananyeva NI, Lukina LV, et al. Method of differential diagnosis of mild cognitive impairment of various origins: cross sectional study. Diagnostic radiology and radiotherapy. 2023;14(2):64-73.  https://doi.org/10.22328/2079-5343-2023-14-2-64-73
  18. Stulov IK, Ananyeva NI, Lukina LV, Zalutskaya NM. The role of MR morphometry of hippocampal subfields in the diagnosis of mild cognitive impairment of various origins. Rossiiskii neirokhirurgicheskii zhurnal imeni professora A.L. Polenova. 2022;14(2):153-159. (In Russ.).
  19. Rashidi-Ranjbar N, Churchill NW, Black SE, et al. Neuropsychiatric symptoms and brain morphology in patients with mild cognitive impairment, cerebrovascular disease and Parkinson disease: A cross sectional and longitudinal study. International Journal of Geriatric Psychiatry. 2024;39(3):e6074. https://doi.org/10.1002/gps.6074
  20. Chin J, Kim N, Kim H, et al. P1‐287: The Cortical Thinning Pattern Associated with the Mild Behavioral Impairment in Patients with Subjective Cognitive Decline, Mild Cognitive Impairment and Dementia Due to Alzheimer’s Disease. Alzheimer’s & Dementia. 2019;15(7S_Part_7). https://doi.org/10.1016/j.jalz.2019.06.842
  21. Lussier FZ, Pascoal TA, Chamoun M, et al. Mild behavioral impairment is associated with β‐amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimer’s & Dementia. 2020;16(1):192-199.  https://doi.org/10.1002/alz.12007
  22. Orso B, Mattei C, Arnaldi D, et al. Clinical and MRI Predictors of Conversion From Mild Behavioural Impairment to Dementia. The American Journal of Geriatric Psychiatry. 2020;28(7):755-763.  https://doi.org/10.1016/j.jagp.2019.12.007
  23. Shu J, Qiang Q, Yan Y, et al. Aberrant Topological Patterns of Structural Covariance Networks in Cognitively Normal Elderly Adults With Mild Behavioral Impairment. Frontiers in Neuroanatomy. 2021;15:738100. 15.  https://doi.org/10.3389/fnana.2021.738100
  24. Gill S, Wang M, Mouches P, et al. Neural correlates of the impulse dyscontrol domain of mild behavioral impairment. International Journal of Geriatric Psychiatry. 2021;36(9):1398-1406. https://doi.org/10.1002/gps.5540
  25. Matsuoka T, Ueno D, Ismail Z, et al. Neural Correlates of Mild Behavioral Impairment: A Functional Brain Connectivity Study Using Resting-State Functional Magnetic Resonance Imaging. Journal of Alzheimer’s Disease. 2021;83(3):1221-1231. https://doi.org/10.3233/jad-210628
  26. Matuskova V, Ismail Z, Nikolai T, et al. Mild Behavioral Impairment Is Associated With Atrophy of Entorhinal Cortex and Hippocampus in a Memory Clinic Cohort. Frontiers in Aging Neuroscience. 2021;13:643271. https://doi.org/10.3389/fnagi.2021.643271
  27. Petersen RC. Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine. 2004;256(3):183-194.  https://doi.org/10.1111/j.1365-2796.2004.01388.x
  28. Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774-81.  https://doi.org/10.1016/j.neuroimage.2012.01.021
  29. Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968-80.  https://doi.org/10.1016/j.neuroimage.2006.01.021
  30. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93(3):491-507.  https://doi.org/10.1093/biomet/93.3.491
  31. Kloke JD, McKean JW. Rfit: Rank-based Estimation for Linear Models. The R Journal. 2012;4(2):57.  https://doi.org/10.32614/rj-2012-014
  32. Selya AS, Rose JS, Dierker LC, et al. A practical guide to calculating Cohen’s f 2, a measure of local effect size, from PROC MIXED. Front Psychol. 2012;3:1-6.  https://doi.org/10.3389/fpsyg.2012.00111
  33. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Lawrence Erlbaum Associates; 2013.
  34. Lombardi G, Crescioli G, Cavedo E, et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Database of Systematic Reviews. 2020 Mar 2;3(3):CD009628. https://doi.org/10.1002/14651858.CD009628.pub2
  35. Butler E, Mounsey A. Structural MRI for the Early Diagnosis of Alzheimer Disease in Patients with MCI. Am Fam Physician. 2021;103(5):273-274. 
  36. Klein-Flügge MC, Jensen DEA, Takagi Y, et al. Relationship between nuclei-specific amygdala connectivity and mental health dimensions in humans. Nature Human Behaviour. 2022;6(12):1705-1722. https://doi.org/10.1038/s41562-022-01434-3
  37. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(3):564-583.  https://doi.org/10.1093/brain/awl004
  38. Haussmann R, Werner A, Gruschwitz A, et al. Precuneus Structure Changes in Amnestic Mild Cognitive Impairment. American Journal of Alzheimer’s Disease & Other Dementiasr. 2016;32(1):22-26.  https://doi.org/10.1177/1533317516678087
  39. Csukly G, Sirály E, Fodor Z, et al. The Differentiation of Amnestic Type MCI from the Non-Amnestic Types by Structural MRI. Frontiers in Aging Neuroscience. 2016 Mar 30;8:52.  https://doi.org/10.3389/fnagi.2016.00052
  40. Boisgueheneuc Fd, Levy R, Volle E, et al. Functions of the left superior frontal gyrus in humans: a lesion study. Brain. 2006;129(12):3315-3328. https://doi.org/10.1093/brain/awl244
  41. de la Vega A, Chang LJ, Banich MT, et al. Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization. The Journal of Neuroscience. 2016;36(24):6553-6562. https://doi.org/10.1523/jneurosci.4402-15.2016
  42. Rashidi-Ranjbar N, Rajji TK, Kumar S, et al. Frontal-executive and corticolimbic structural brain circuitry in older people with remitted depression, mild cognitive impairment, Alzheimer’s dementia, and normal cognition. Neuropsychopharmacology. 2020;45(9):1567-1578. https://doi.org/10.1038/s41386-020-0715-y
  43. Schilling C, Kühn S, Paus T, et al. Cortical thickness of superior frontal cortex predicts impulsiveness and perceptual reasoning in adolescence. Molecular Psychiatry. 2012;18(5):624-630.  https://doi.org/10.1038/mp.2012.56
  44. Takeuchi H, Taki Y, Nouchi R, et al. Regional gray matter density is associated with achievement motivation: evidence from voxel-based morphometry. Brain Structure and Function. 2012;219(1):71-83.  https://doi.org/10.1007/s00429-012-0485-3

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.