The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Esin R.G.

Kazanskaia gosudarstvennaia meditsinskaia akademiia

Khaĭrullin I.Kh.

GBUZ "Respublikanskaia klinicheskaia bol'nitsa #2" Minzdrava Respubliki Tatarstan, Kazan'

Esin O.R.

Kazanskaia gosudarstvennaia meditsinskaia akademiia

Cerebral insulin resistance: current concepts of the pathogenesis and possible therapeutic strategies

Authors:

Esin R.G., Khaĭrullin I.Kh., Esin O.R.

More about the authors

Read: 2406 times


To cite this article:

Esin RG, Khaĭrullin IKh, Esin OR. Cerebral insulin resistance: current concepts of the pathogenesis and possible therapeutic strategies. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(1):92‑95. (In Russ.)
https://doi.org/10.17116/jnevro20181181192-95

Recommended articles:
Cognitive functions asse­ssment of elde­rly patients with type 2 diabetes mellitus. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3):46-50
Surgical treatment of macromastia in benign breast dysplasia and como­rbidities. Plastic Surgery and Aesthetic Medi­cine. 2024;(4-2):5-13
Diabetic reti­nopathy and pregnancy. Russian Annals of Ophthalmology. 2024;(6):145-151
Effe­ctiveness of using preventive and personalized technologies for obesity correction. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6-2):80-90
Psoriasis: analysis of como­rbid pathology. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(1):16-21

References:

  1. Global report on diabetes. World Health Organization 2016. Accessed Apr. 10, 2017. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf
  2. Samuel V, Shulman G. Mechanisms for Insulin Resistance: Common Threads and Missing Links. Cell. 2012;148(5):852-871. https://doi.org/10.1016/j.cell.2012.02.017
  3. Lutski M, Weinstein G, Goldbourt U, Tanne D. Insulin Resistance and Future Cognitive Performance and Cognitive Decline in Elderly Patients with Cardiovascular Disease. Journal of Alzheimer’s Disease. 2017;57(2):633-643. https://doi.org/10.3233/jad-161016
  4. Lee S, Zabolotny J, Huang H, Lee H, Kim Y. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood. Molecular Metabolism. 2016;5(8):589-601. https://doi.org/10.1016/j.molmet.2016.06.011
  5. Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272(5656):827-829. https://doi.org/10.1038/272827a0
  6. Plum L, Schubert M, Brüning J. The role of insulin receptor signaling in the brain. Trends in Endocrinology & Metabolism. 2005;16(2):59-65. https://doi.org/10.1016/j.tem.2005.01.008
  7. Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the Brain: Sources, Localization and Functions. Molecular Neurobiology. 2012;47(1):145-171. https://doi.org/10.1007/s12035-012-8339-9
  8. Bruning J. Role of Brain Insulin Receptor in Control of Body Weight and Reproduction. Science. 2000;289(5487):2122-2125. https://doi.org/10.1126/science.289.5487.2122
  9. Bondareva V, Chistyakova O. Insulin and insulin-receptor signaling in the brain. Neurochemical Journal. 2007;1(3):176-187. https://doi.org/10.1134/s1819712407030026
  10. Willette A, Xu G, Johnson S, et al. Insulin Resistance, Brain Atrophy, and Cognitive Performance in Late Middle-Aged Adults. Diabetes Care. 2012;36(2):443-449. https://doi.org/10.2337/dc12-092
  11. Talbot K, Wang H, Kazi H, Han L, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. Journal of Clinical Investigation. 2012;122(4):1316-1338. https://doi.org/10.1172/jci59903
  12. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong C. Deficient brain insulin signalling pathway in Alzheimer’s disease an ddiabetes. The Journal of Pathology. 2011;225(1):54-62. https://doi.org/10.1002/path.2912
  13. Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong C. Dysregulation of Insulin Signaling, Glucose Transporters, O-GlcNAcylation, and Phosphorylation of Tau and Neurofilaments in the Brain. The American Journal of Pathology. 2009;175(5):2089-2098. https://doi.org/10.2353/ajpath.2009.090157
  14. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel J, Decker H, Silverman MA, Kazi H, Melo HM, Mcclean PL, Holscher C, Arnold SE, Talbot K, Klein WL, Munoz DP, Ferreira ST, De Felice FG. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease — associated Aβ oligomers. Journal of Clinical Investigation. 2012;122(4):1339-1353. https://doi.org/10.1172/jci57256
  15. Zhao W, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL. Amyloid beta oligomers induce impairment of neuronal insulin receptors. The FASEB Journal. 2007;22(1):246-260. https://doi.org/10.1096/fj.06-7703com
  16. Mielke JG, Taghibiglou C, Liu Zhang Y, Jia Z, Adeli K, Wang YT. A biochemical and functional characterization of diet-induced brain insulin resistance. Journal of Neurochemistry. 2005;93(6):1568-1578. https://doi.org/10.1111/j.1471-4159.2005.03155.x
  17. Kaiyala K, Prigeon R, Kahn S, Woods S, Schwartz M. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 2000;49(9):1525-1533. https://doi.org/10.2337/diabetes.49.9.1525
  18. Stein L, Dorsa D, Baskin D, Figlewicz D, Porte D, Woods S. Reduced Effect of Experimental Peripheral Hyperinsulinemia to Elevate Cerebrospinal Fluid Insulin Concentrations of Obese Zucker Rats. Endocrinology. 1987;121(5):1611-1615. https://doi.org/10.1210/endo-121-5-1611
  19. Choi K, Kim Y. Molecular Mechanism of Insulin Resistance in Obesity and Type 2 Diabetes. The Korean Journal of Internal Medicine. 2010;25(2):119. https://doi.org/10.3904/kjim.2010.25.2.119
  20. Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM, D’alessio D, Tso P, Seeley RJ, Woods SC. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiology & Behavior. 2011;103(1):10-16. https://doi.org/10.1016/j.physbeh.2011.01.010
  21. Pipatpiboon N, Pintana H, Pratchayasakul W, Chattipakorn N, Chattipakorn S. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulinresistance induced by high-fat diet consumption. European Journal of Neuroscience. 2012;37(5):839-849. https://doi.org/10.1111/ejn.12088
  22. Ho L. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. The FASEB Journal. 2004. https://doi.org/10.1096/fj.03-0978fje
  23. Rubin R, Peyrot M. Was Willis right? Thoughts on the interaction of depression and diabetes. Diabetes/Metabolism Research and Reviews. 2002;18(3):173-175. https://doi.org/10.1002/dmrr.292
  24. Musselman D, Betan E, Larsen H, Phillips L. Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biological Psychiatry. 2003;54(3):317-329. https://doi.org/10.1016/s0006-3223(03)00569-9
  25. Kleinridders A, Cai W, Cappellucci L, Ghazarian A, Collins WR, Vienberg SG, Pothos EN, Kahn CR. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proceedings of the National Academy of Sciences. 2015;112(11):3463-3468. https://doi.org/10.1073/pnas.1500877112
  26. Silva N, Atlantis E, Ismail K. A Review of the Association Between Depression and Insulin Resistance: Pitfalls of Secondary Analyses or a Promising New Approach to Prevention of Type 2 Diabetes? Current Psychiatry Reports. 2011;14(1):8-14. https://doi.org/10.1007/s11920-011-0245-8
  27. Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Progress in Neurobiology. 2013;108:21-43. https://doi.org/10.1016/j.pneurobio.2013.06.004
  28. Su L, Cai Y, Xu Y, Dutt A, Shi S, Bramon E. Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry. 2014;14(1). https://doi.org/10.1186/s12888-014-0321-9
  29. Domenici E, Willé DR, Tozzi F, Prokopenko I, Miller S, Mckeown A, Brittain C, Rujescu D, Giegling I, Turck CW, Holsboer F, Bullmore ET, Middleton L, Merlo-Pich E, Alexander RC, Muglia P. Plasma Protein Biomarkers for Depression and Schizophrenia by Multi Analyte Profiling of Case-Control Collections. PLoS ONE. 2010;5(2):9166. https://doi.org/10.1371/journal.pone.0009166
  30. Pratchayasakul W, Kerdphoo S, Petsophonsakul P, Pongchaidecha A, Chattipakorn N, Chattipakorn S. Effects of high-fat diet on insulinreceptor function in rat hippocampus and the level of neuronal corticosterone. Life Sciences. 2011;88(13-14):619-627. https://doi.org/10.1016/j.lfs.2011.02.003
  31. Grillo C, Piroli G, Kaigler K, Wilson S, Wilson M, Reagan L. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behavioural Brain Research. 2011;222(1):230-235. https://doi.org/10.1016/j.bbr.2011.03.052
  32. Cline BH, Steinbusch HW, Malin D, Revishchin AV, Pavlova GV, Cespuglio R, Strekalova T. The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2. BMC Neuroscience. 2012;13(1):110. https://doi.org/10.1186/1471-2202-13-110
  33. Esin OR, Khayrullin IK, Esin RG. The disorders of verbal communication in patients with diabetes mellitus type 2: Causes and treatment. Research Journal of Medical Sciences. 2015;9(4):163-167. https://doi.org/10.3923/rjmsci.2015.163.167
  34. Khairullin IKh, Esin RG, Esin OR. Cognitive impairment in diabetes mellitus and hypertension, a possibility of correction. Nevrologiya, neiropsikhiatriya, psikhosomatika. 2016;8(3):48-52. (In Russ.) https://doi.org/10.14412/2074-2711-2016-3-48-52
  35. Esin R, Khairullin I, Esin O, Abakumova A. Bio Nano Sci. 2016;6:502. https://doi.org/10.1007/s12668-016-0261-6
  36. Taliyan R, Sharma P. Protective Effect and Potential Mechanism of Ginkgo biloba Extract EGb 761 on STZ-induced Neuropathic Pain in Rats. Phytother Res. 2012;26(12):1823-1829. https://doi.org/10.1002/ptr.4648
  37. Silva G. Neuroprotective action of Ginkgo biloba on the enteric nervous system of diabetic rats. World Journal of Gastroenterology. 2011;17(7):898. https://doi.org/10.3748/wjg.v17.i7.898
  38. Saini A, Taliyan R, Sharma P. Protective effect and mechanism of Ginkgo biloba extract-EGb 761 on STZ-induced diabetic cardiomyopathy in rats. Pharmacognosy Magazine. 2014;10(38):172. https://doi.org/10.4103/0973-1296.131031
  39. Lim S, Yoon JW, Kang SM, Choi SH, Cho BJ, Kim M, Park HS, Cho HJ, Shin H, Kim Y, Kim HS, Jang HC, Park KS. EGb761, a Ginkgo Biloba Extract, Is Effective Against Atherosclerosis In Vitro, and in a Rat Model of Type 2 Diabetes. PLoS ONE. 2011;6(6):20301. https://doi.org/10.1371/journal.pone.0020301
  40. Welt K, Weiss J, Martin R, Hermsdorf T, Drews S, Fitzl G. Ginkgo biloba extract protects rat kidney from diabetic and hypoxic damage. Phytomedicine. 2007;14(2-3):196-203. https://doi.org/10.1016/j.phymed.2006.03.023
  41. Kudolo G, Delaney D, Blodgett J. Short-term oral ingestion of Ginkgo biloba extract (EGb 761) reduces malondialdehyde levels in washed platelets of type 2 diabetic subjects. Diabetes Research and Clinical Practice. 2005;68(1):29-38. https://doi.org/10.1016/j.diabres.2004.08.007
  42. Wei Z, Wei Z, Shan Shan X, Qi Chong X. GW24-e2480 Ginkgo biloba attenuates oxidative DNA damage of human umbilical vein endothelial cells induced by intermittent high glucose. Heart. 2013;99(suppl 3):95-96. https://doi.org/10.1136/heartjnl-2013-304613.259
  43. Liu X, Hao W, Qin Y, Decker Y, Wang X, Burkart M, Schötz K, Menger MD, Fassbender K, Liu Y.Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain, Behavior, and Immunity. 2015;46:121-131. https://doi.org/10.1016/j.bbi.2015.01.011
  44. Xie H, Wang J, Yau L, Liu Y, Liu L, Han Q, Zhao Z, Jiang Z. Quantitative Analysis of the Flavonoid Glycosides and Terpene Trilactones in the Extract of Ginkgo biloba and Evaluation of Their Inhibitory Activity towards Fibril Formation of β-Amyloid Peptide. Molecules. 2014;19(4):4466-4478. https://doi.org/10.3390/molecules19044466
  45. Cong W, Tao R, Tian J, Zhao J, Liu Q, Ye F. EGb761, an extract of Ginkgo biloba leaves, reduces insulin resistance in a high-fat-fed mouse model. Acta Pharmaceutica Sinica B. 2011;1(1):14-20. https://doi.org/10.1016/j.apsb.2011.04.006
  46. Banin R, Hirata B, Andrade I, Zemdegs J, Clemente A, Dornellas A, Boldarine V, Estadella D, Albuquerque K, Oyama L, Ribeiro E, Telles M. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats. Brazilian Journal of Medical and Biological Research. 2014;47(9):780-788. https://doi.org/10.1590/1414-431x20142983
  47. Choi S, Shin H, Kim H, Lee S, Jang H, Lee K, Kang Y. Involvement of Ca2+, CaMK II and PKA in EGb 761-induced insulin secretion in INS-1 cells. Journal of Ethnopharmacology. 2007;110(1):49-55. https://doi.org/10.1016/j.jep.2006.09.001
  48. Lim S, Yoon JW, Kang SM, Choi SH, Cho BJ, Kim M, Park HS, Cho HJ, Shin H, Kim Y, Kim HS, Jang HC, Park KS. EGb761, a Ginkgo Biloba Extract, Is Effective Against Atherosclerosis In Vitro, and in a Rat Model of Type 2 Diabetes. PLoS ONE. 2011;6(6):20301. https://doi.org/10.1371/journal.pone.0020301
  49. Kudolo G, Wang W, Javors M, Blodgett J. The effect of the ingestion of Ginkgo biloba extract (EGb 761) on the pharmacokinetics of metformin in non-diabetic and type 2 diabetic subjects — A double blind placebo-controlled, crossover study. Clinical Nutrition. 2006;25(4):606-616. https://doi.org/10.1016/j.clnu.2005.12.012
  50. Zhao Y, Zhang Y, Pan F. Experimental immunology The effects of EGb761 on lipopolysaccharide-induced depressive-like behaviour in C57BL/6J mice. Central European Journal of Immunology. 2015;1:11-17. https://doi.org/10.5114/ceji.2015.49427
  51. Zhang Y, Zhao Y, Pan F, Zhang P. EGb761 attenuates depressive-like behaviours induced by long-term light deprivation in C57BL/6J mice through inhibition of NF-κB-IL-6 signalling pathway. Central European Journal of Immunology. 2016;4:350-357. https://doi.org/10.5114/ceji.2016.63807
  52. Hoerr R, Nacu A. Neuropsychiatric symptoms in dementia and the effects of Ginkgo biloba extract EGb 761® treatment: additional results from a 24-week randomized, placebo-controlled trial. Open Access Journal of Clinical Trials. 2016:1. https://doi.org/10.2147/oajct.s93531
  53. Preuss U, Bachinskaya N, Kaschel R, Wong J, Hoerr R, Gavrilova S. 1689 — Ginkgo biloba extract EGb 761 in mild cognitive impairment with neuropsychiatric symptoms: a randomized placebo-controlled trial. European Psychiatry. 2013;28:1. https://doi.org/10.1016/s0924-9338(13)76677-x

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.