The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Savenko I.V.

I.P. Pavlov First St-Peterburg State Medical University, St-Petersburg, Russia, 197022

Garbaruk E.S.

Laboratory of Hearing and Speech, Academician I.P. Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia, 197022

Boboshko M.Iu.

Laboratoriia slukha i rechi Sankt-Peterburgskogo gosudarstvennogo meditsinskogo universiteta im. akad. I.P. Pavlova

Psychoacoustic methods in diagnosis of central auditory processing disorders in prematurely born children

Authors:

Savenko I.V., Garbaruk E.S., Boboshko M.Iu.

More about the authors

Journal: Russian Bulletin of Otorhinolaryngology. 2020;85(3): 11‑17

Read: 2546 times


To cite this article:

Savenko IV, Garbaruk ES, Boboshko MIu. Psychoacoustic methods in diagnosis of central auditory processing disorders in prematurely born children. Russian Bulletin of Otorhinolaryngology. 2020;85(3):11‑17. (In Russ.)
https://doi.org/10.17116/otorino20208503111

Recommended articles:
The algo­rithm for clinical and audiological obse­rvation of children born preterm. Russian Bulletin of Otorhinolaryngology. 2025;(1):20-28
Surgical treatment of posthemorrhagic hydrocephalus in premature infa­nts. Burdenko's Journal of Neurosurgery. 2025;(4):7-17

References:

  1. Rogers EE, Hintz SR. Early neurodevelopmental outcomes of extremely preterm infants. Seminars in Perinatology. 2016;40(8):497-509. https://doi.org/10.1053/j.semperi.2016.09.002
  2. Martines F, Salvago P, Bentvigna D, Bartolone A, Dispenza F, Martines E. Audiologic profile of infants at risk: Experience of a Western Sicily tertiary care centre. International Journal of Pediatric Otorhinolaryngology. 2012;76(9):1285-1291. https://doi.org/10.1016/j.ijporl.2012.05.020
  3. Martines F, Martines E, Mucia M, Sciacca V, Salvago P. Prelingual sensorineural hearing loss and infants at risk: Western Sicily report. International Journal of Pediatric Otorhinolaryngology. 2013;77(4):513-518. https://doi.org/10.1016/j.ijporl.2012.12.023
  4. Bhutani VK, Wong RJ, Stevenson DK. Hyperbilirubinemia in Preterm Neonates. Clinics in Perinatology. 2016;43(2):215-232. https://doi.org/10.1016/j.clp.2016.01.001
  5. Vohr BR. Language and hearing outcomes of preterm infants. Seminars in Perinatology. 2016;8:510-519. https://doi.org/10.1053/j.semperi.2016.09.003
  6. Back SA. Brain injury in the preterm infant: new horizons for pathogenesis and prevention. Pediatric Neurology. 2015;53(3):185-192. https://doi.org/10.1016/j.pediatrneurol.2015.04.006
  7. Novak CM, Ozen M, Burd I. Perinatal brain injury: mechanisms, prevention, and outcomes. Clinics in Perinatology. 2018;45(2): 357-375. https://doi.org/10.1016/j.clp.2018.01.015
  8. Amin SB, Vogler-Elias D, Orlando M, Wang H. Auditory neural myelination is associated with early childhood language development in premature infants. Early Human Development. 2014; 90(10):673-678. https://doi.org/10.1016/j.earlhumdev.2014.07.014
  9. Duerden EG, Taylor MJ, Miller SP. Brain development in infants born preterm: looking beyond injury. Seminars in Pediatric Neurology. 2013;20(2):65-74. https://doi.org/10.1016/j.spen.2013.06.007
  10. Musiek FE, Chermak GD. Auditory neuroscience and diagnosis. Handbook of central auditory processing disorder, vol. 1. 2nd ed. San Diego: Plural Publishing; 2014.
  11. Boboshko MYu, Garbaruk ES, Zhilinskaya EV, Salakhbekov MA. Central auditory processing disorders (literature review). Rossijskaya otorinolaringologiya. 2014;72(5):87-96. (In Russ.)
  12. Koroleva IV. Sovremennyj podkhod k diagnostike perifericheskikh i tsentral’nykh narushenij slukha u detej. Uchebnoe posobie. SPb NII ukha, gorla, nosa i rechi; 2000. (In Russ.)
  13. Gallo J, Dias KZ, Pereira LD, Azevedo MF, Sousa EC. Auditory processing evaluation in children born preterm. Jornal da Sociedade Brasileira de Fonoaudiologia. 2011;23(2):95-101. https://doi.org/10.1590/S2179-64912011000200003
  14. Guzzetta F, Conti G, Mercuri E. Auditory processing in infancy: do early abnormalities predict of language and cognitive development? Developmental Medicine & Child Neurology. 2011;53(12):1085-1090. https://doi.org/10.1111/j.1469-8749.2011.04084.x
  15. Iliadou V, Bamiou DE, Kaprinis S, Kandylis D, Vlaikidis N, Apalla K, et al. Auditory processing disorder and brain pathology in a preterm child with learning disabilities. Journal of the American academy of audiology. 2008;19(7):557-563. https://doi.org/10.3766/jaaa.19.7.5
  16. Jansson-Verkasalo E, Haverinen S, Alkema AM, Korpilahti P. Children born preterm have high risk for central auditory processing deficits, as indexed by auditory brain event-related potentials (ERPs). Revista de logopedia, foniatria y audiologia. 2011;31(3): 125-132. https://doi.org/10.1016/S0214-4603(11)70181-4
  17. Amin SB, Orlando M, Monczynski C, Tillery K. Central auditory processing disorder profile in premature and term infants. American Journal of Perinatology. 2015;32(4):399-404. https://doi.org/10.1055/s-0034-1387928
  18. Durante AS, Mariano S, Pachi PR. Auditory processing abilities in prematurely born children. Early Human Development. 2018; 120:26-30. https://doi.org/10.1016/j.earlhumdev.2018.03.011
  19. Savenko IV, Boboshko MYu, Salakhbekov MA. Ontogenetic aspects of central auditory processing disorders. Meditsinskij vestnik Severnogo Kavkaza. 2015;10(4):459-467. (In Russ.) https://doi.org/10.14300/mnnc.2015.10112
  20. Serenius F, Ewald U, Farooqi A, Fellman V, Hafström M, Hellgren K, et al. Neurodevelopmental outcomes among extremely preterm infants 6.5 years after active perinatal care in Sweden. JAMA Pediatrics. 2016;1:170(10):954-963. https://doi.org/10.1001/jamapediatrics.2016.1210
  21. Keith RW. Random Gap Detection Test. Auditec, St. Louis (MO). 2002.
  22. Boboshko MYu, Zhilinskaya EV, Warzybok A, Maltseva NV, Zokoll M, Kollmeier B, et al. The speech audiometry using the matrix sentence test. Vestnik otorinolaringologii. 2016;81(5):40-44. (In Russ.) https://doi.org/10.17116/otorino201681540-44
  23. Boboshko MYu, Kalmykova IV, Garbaruk ES, Kibalova YuS, Savenko IV. Modern approach in the children speech audiometry. Sensornye sistemy. 2010;24(4):305-313. (In Russ.)
  24. Penn AA, Gressens P, Fleiss B, Back SA, Gallo V. Controversies in preterm brain injury. Neurobiology of Disease. 2016;92(Pt A):90-101. https://doi.org/10.1016/j.nbd.2015.10.012
  25. Nosarti C, Nam KW, Walshe M, Murray RM, Cuddy M, Rifkin L, et al. Preterm birth and structural brain alterations in early adulthood. NeuroImage: Clinical. 2014;6:180-191. https://doi.org/10.1016/j.nicl.2014.08.005
  26. Hinojosa-Rodríguez M, Harmony T, Carrillo-Prado C, Van Horn JD, Irimia A. Torgerson C, et al. Clinical neuroimaging in the preterm infant: diagnosis and prognosis. NeuroImage: Clinical. 2017;16:355-368. https://doi.org/10.1016/j.nicl.2017.08.015
  27. Fischi-Gómez E, Vasung L, Meskaldji DE, Lazeyras F, Borradori- Tolsa C, Hagmann P, et al. Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cerebral Cortex. 2015;25(9):2793-2805. https://doi.org/10.1093/cercor/bhu073
  28. Fischi-Gomez E, Muñoz-Moreno E, Vasung L, Griffa A, Borradori-Tolsa C, Monnier M, et al. Brain network characterization of high-risk preterm-born school-age children. Neuroimage: Clinical. 2016;11:195-209. https://doi.org/10.1016/j.nicl.2016.02.001
  29. Karolis VR, Froudist-Walsh S, Kroll J, Brittain PJ, Tseng CJ, Nam KW, et al. Volumetric grey matter alterations in adolescents and adults born very preterm suggest accelerated brain maturation. Neuroimage. 2017;163:379-389. https://doi.org/10.1016/j.neuroimage.2017.09.039
  30. Batalle D, Hughes EJ, Zhang H, Tournier JD, Tusor N, Aljabar P, et al. Early development of structural networks and the impact of prematurity on brain connectivity. Neuroimage. 2017;149:379-392. https://doi.org/10.1016/j.neuroimage.2017.01.065
  31. Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. Journal of Neuroscience. 2011;31(30):10937-10947. https://doi.org/10.1523/JNEUROSCI.5302-10.2011
  32. Mullen KM, Vohr BR, Katz KH, Schneider KC, Lacadie C, Hampson M, et al. Preterm birth results in alterations in neural connectivity at age 16 years. Neuroimage. 2011;54(4):2563-2570. https://doi.org/10.1016/j.neuroimage.2010.11.019
  33. Nosarti C, Shergill SS, Allin MP, Walshe M, Rifkin L, Murray RM, et al. Neural substrates of letter fluency processing in young adults who were born very preterm: alterations in frontal and striatal regions. Neuroimage. 2009;47(4):1904-1913. https://doi.org/10.1016/j.neuroimage.2009.04.041
  34. Eryigit Madzwamuse S, Baumann N, Jaekel J, Bartmann P, Wolke D. Neuro-cognitive performance of very preterm or very low birth weight adults at 26 years. Journal of Child Psychology and Psychiatry. 2015;56(8):857-864. https://doi.org/10.1111/jcpp.12358
  35. Damulin IV. Neuroplasticity: main mechanisms and their clinical significance. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2009;109(4):4-8. (In Russ.)
  36. Bruckert L, Borchers LR, Dodson CK, Marchman VA, Travis KE, Ben-Shachar M, et al. White matter plasticity in reading-related rathways differs in children born preterm and at term: a longitudinal analysis. Frontiers in human neuroscience. 2019;13:139. https://doi.org/10.3389/fnhum.2019.00139

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.