The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Yusef Yu.N.

Krasnov Research Institute of Eye Diseases;
I.M. Sechenov First Moscow State Medical University (Sechenov University)

Petrachkov D.V.

Krasnov Research Institute of Eye Diseases

Intraoperative optical coherence tomography in vitreoretinal surgery

Authors:

Yusef Yu.N., Petrachkov D.V.

More about the authors

Journal: Russian Annals of Ophthalmology. 2023;139(5): 113‑120

Read: 1735 times


To cite this article:

Yusef YuN, Petrachkov DV. Intraoperative optical coherence tomography in vitreoretinal surgery. Russian Annals of Ophthalmology. 2023;139(5):113‑120. (In Russ.)
https://doi.org/10.17116/oftalma2023139051113

Recommended articles:
Early vitrectomy in the treatment of diabetic reti­nopathy. Russian Annals of Ophthalmology. 2025;(5):87-93

References:

  1. Ung C, Miller JB. Intraoperative Optical Coherence Tomography in Vitreoretinal Surgery. Semin Ophthalmol. 2019;34(4):312-316.  https://doi.org/10.1080/08820538.2019.1620811
  2. Ringel MJ, Tang EM, Tao YK. Advances in multimodal imaging in ophthalmology. Ther Adv Ophthalmol. 2021;13:25158414211002400. Published 2021 Mar 19.  https://doi.org/10.1177/25158414211002400
  3. Benda T, Studený P. Intraoperative optical coherence tomography — available technologies and possibilities of use. A review. Cesk Slov Oftalmol. 2022 Winter;2(Ahead of Print):1001-1010.
  4. Avetisov KS, Bol’shunov AV, Avetisov SE, Yusef YuN, Ivanov MN, Sobol EN, Sakalova ED. Hybrid (femtosecond laser-assisted) phaco surgery and the state of the macula. Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2017;4(133):97-102. (In Russ.). https://doi.org/10.17116/oftalma2017133497-102
  5. Dayani PN, Maldonado R, Farsiu S, Toth CA. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina. 2009;29(10):1457-1468. https://doi.org/10.1097/IAE.0b013e3181b266bc
  6. Branchini LA, Gurley K, Duker JS, Reichel E. Use of handheld intraoperative spectral-domain optical coherence tomography in a variety of vitreoretinal diseases. Ophthalmic Surg Lasers Imaging Retina. 2016;47(1):49-54.  https://doi.org/10.3928/23258160-20151214-07
  7. Joos KM, Shen JH. Miniature real-time intraoperative forward-imaging optical coherence tomography probe. Biomed Opt Express. 2013;4(8):1342-1350. https://doi.org/10.1364/BOE.4.001342
  8. Asami T, Terasaki H, Ito Y, Sugita T, Kaneko H, Nishiyama J, Namiki H, Kobayashi M, Nishizawa N. Development of a fiber-optic optical coherence tomography probe for intraocular use. Invest Ophthalmol Vis Sci. 2016;57(9): OCT568. https://doi.org/10.1167/iovs.15-18853
  9. Carrasco-Zevallos OM, Viehland C, Keller B, Draelos M, Kuo AN, Yoth CA, Izatt JA. Review of intraoperative optical coherence tomography: technology and applications [Invited]. Biomed Opt Express. 2017;8(3):1607-1637. https://doi.org/10.1364/BOE.8.001607
  10. Bayborodov YaV, Balashevich LI. Microinvasive surgical treatment of macular hole of stage I without vitrectomy under the intra-operative OCT control. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya. 2017;(1): 53-58. (In Russ.). https://doi.org/10.25276/0235-4160-2017-1-53-58
  11. Ahronovich EZ, Simaan N, Joos KM. A Review of Robotic and OCT-Aided Systems for Vitreoretinal Surgery. Adv Ther. 2021;38(5):2114-2129. https://doi.org/10.1007/s12325-021-01692-z
  12. Ehlers JP, Dupps WJ, Kaiser PK, Goshe J, Singh RP, Petkovsek D, Srivastava SK. The prospective intraoperative and perioperative ophthalmic imaging with optical coherence tomography (PIONEER) study: 2-year results. Am J Ophthalmol. 2014;158(5):999-1007. https://doi.org/10.1016/j.ajo.2014.07.034
  13. Ray R, Baranano DE, Fortun JA, Schwent BJ, Cribbs BE, Bergstrom CS, Hubbard GB, Srivastava SK. Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery. Ophthalmology. 2011;118(11):2212-2217. https://doi.org/10.1016/j.ophtha.2011.04.012
  14. Binder S, Falkner-Radler CI, Hauger C, Matz H, Glittenberg C. Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina. 2011;31(7):1332-1336. https://doi.org/10.1097/IAE.0b013e3182019c18
  15. Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system. Retina. 2013;33(1):232-236.  https://doi.org/10.1097/IAE.0b013e31826e86f5
  16. Hahn P, Migacz J, O’Connell R, Maldonado RS, Izatt JA, Toth CA. The use of optical coherence tomography in intraoperative ophthalmic imaging. Ophthalmic Surg Lasers Imaging. 2011;42(suppl):85-94.  https://doi.org/10.3928/15428877-20110627-08
  17. Zakir R, Iqbal K, Hassaan Ali M, Mirza UT, Mahmood K, Riaz S, Hashmani N. The outcomes and usefulness of Intraoperative Optical Coherence Tomography in vitreoretinal surgery and its impact on surgical decision making. Rom J Ophthalmol. 2022;66(1):55-60.  https://doi.org/10.22336/rjo.2022.12
  18. Ehlers JP, Modi YS, Pecen PE, Goshe J, Dupps WJ, Rachitskaya A, Sharma S, Yuan A, Singh R, Kaiser PK, Reese JL, Calabrise C, Watts A, Srivastava SK. The DISCOVER Study 3-Year Results: Feasibility and Usefulness of Microscope-Integrated Intraoperative OCT during Ophthalmic Surgery. Ophthalmology. 2018;125(7):1014-1027. https://doi.org/10.1016/j.ophtha.2017.12.037
  19. Ehlers JP, Kaiser PK, Srivastava SK. Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study. Br J Ophthalmol. 2014;98(10):1329-1332. https://doi.org/10.1136/bjophthalmol-2014-305294
  20. Ehlers JP, Goshe J, Dupps WJ, Kaiser PK, Singh RP, Gans R, Eisengart J, Srivastava SK. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER study RESCAN results. JAMA Ophthalmol. 2015;133(10):1124-1132. https://doi.org/10.1001/jamaophthalmol.2015.2376
  21. Runkle A, Srivastava SK, Ehlers JP. Microscope-Integrated OCT Feasibility and Utility With the EnFocus System in the DISCOVER Study. Ophthalmic Surg Lasers Imaging Retina. 2017;48(3):216-222.  https://doi.org/10.3928/23258160-20170301-04
  22. Ehlers JP, Srivastava SK, Feiler D, Noonan AI, Rollins AM, Tao YK. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS One. 2014;9(8):e105224. https://doi.org/10.1371/journal.pone.0105224
  23. Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, Toth CA. Optical coherence tomography for retinal surgery: perioperative analysis to real-time four-dimensional image-guided surgery. Invest Ophthalmol Vis Sci. 2016;57(9):OCT37-50.  https://doi.org/10.1167/iovs.16-19277
  24. Gabr H, Chen X, Zevallos-Carrasco OM, Viehland C, Dandrige A, Sarin N, Mahmoud TH, Vajzovic L, Izatt JA, Toth CA. Visualization from intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for complications of proliferative diabetic retinopathy. Retina. 2018;38(suppl 1):110-120.  https://doi.org/10.1097/IAE.0000000000002021
  25. Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Waterman G, Todorich B, Shieh C, Hahn P, Farsiu S, Kuo AN, Toth CA, Izatt JA. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci Rep. 2016;6:31689. Published 2016 Aug 19.  https://doi.org/10.1038/srep31689
  26. Tang EM, El-Haddad MT, Patel SN, Tao YK. Automated instrument-tracking for 4D video-rate imaging of ophthalmic surgical maneuvers. Biomed Opt Express. 2022;13(3):1471-1484. https://doi.org/10.1364/BOE.450814
  27. El-Haddad MT, Tao YK. Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers. Biomed Opt Express. 2015;6(8):3014-3031. https://doi.org/10.1364/BOE.6.003014
  28. Leisser C, Hackl C, Hirnschall N, Luft N, Döller B, Draschl P, Rigal K, Findl O. Visualizing macular structures during membrane peeling surgery with an intraoperative spectral-domain optical coherence tomography device. Ophthalmic Surg Lasers Imaging Retina. 2016;47(4):328-332.  https://doi.org/10.3928/23258160-20160324-04
  29. Falkner-Radler CI, Glittenberg C, Gabriel M, Binder S. Intrasurgical microscope-integrated spectral domain optical coherence tomography-assisted membrane peeling. Retina. 2015;35(10):2100-2106. https://doi.org/10.1097/IAE.0000000000000596
  30. Aznabaev BM, Dibaev TI, Mukhamadeev TR, Bagdanurova AR. Intraoperative optical coherence tomography in the study of microstructural changes of posterior segment of the eye during vitrectomy. Medicinskij vestnik Bashkortostana. 2018;1(73):19-22. Accessed 05.07.22 (In Russ.). https://cyberleninka.ru/article/n/intraoperatsionnaya-opticheskaya-kogerentnaya-tomografiya-v-izuchenii-mikrostrukturnyh-izmeneniy-zadnego-otdela-glaza-pri
  31. Bayborodov YaV. The concept of the foveola anatomical reconstruction in the surgical treatment of full-thickness macular tears using intraoperative oct control. Ophthalmology Journal = Oftal’mologicheskie vedomosti. 2017;10(3): 12-17 (In Russ.). https://doi.org/10.17816/OV10312-17
  32. Aznabaev BM, Mukhamadeev TR, Dibaev TI. Intraoperative oct imaging in anterior and posterior eye segment surgery. Medicinskij vestnik Bashkortostana. 2016;1(61):151-154. Accessed 05.07.22 (In Russ.). https://cyberleninka.ru/article/n/intraoperatsionnaya-okt-vizualizatsiya-v-hirurgii-perednego-i-zadnego-otrezka-glaza
  33. Tuifua TS, Sood AB, Abraham JR, Srivastava SK, Kaiser PK, Sharma S, Rachitskaya A, Singh RP, Reese J, Ehlers JP. Epiretinal Membrane Surgery Using Intraoperative OCT-Guided Membrane Removal in the DISCOVER Study versus Conventional Membrane Removal. Ophthalmol Retina. 2021; 5(12):1254-1262. https://doi.org/10.1016/j.oret.2021.02.013
  34. Ehlers JP, Xu D, Kaiser PK, Singh RP, Srivastava SK. Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography. Retina. 2014; 34(2):213-221.  https://doi.org/10.1097/IAE.0b013e318297daf3
  35. Ehlers JP, Tam T, Kaiser PK, Martin DF, Smith GM, Srivastava SK. Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome. Retina. 2014;34(7):1341-1346. https://doi.org/10.1097/IAE.0000000000000123
  36. Lytvynchuk LM, Glittenberg CG, Ansari-Shahrezaei S, Binder S. Intraoperative optical coherence tomography assisted analysis of pars Plana vitrectomy for retinal detachment in morning glory syndrome: a case report. BMC Ophthalmol. 2017;17(1):134.  https://doi.org/10.1186/s12886-017-0533-0
  37. Lee LB, Srivastava SK. Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair. Ophthalmic Surg Lasers Imaging. 2011;42 Online:e71-74.  https://doi.org/10.3928/15428877-20110804-05
  38. Muni RH, Kohly RP, Charonis AC, Lee TC. Retinoschisis detected with handheld spectral-domain optical coherence tomography in neonates with advanced retinopathy of prematurity. Arch Ophthalmol. 2010;128(1):57-62.  https://doi.org/10.1001/archophthalmol.2009.361
  39. Rachitskaya AV, Yuan A, Marino MJ, Reese J, Ehlers JP. Intraoperative OCT imaging of the Argus II retinal prosthesis system. Ophthalmic Surg Lasers Imaging Retina. 2016;47(11):999-1003. https://doi.org/10.3928/23258160-20161031-03
  40. Gregori NZ, Lam BL, Davis JL. Intraoperative Use of Microscope-Integrated Optical Coherence Tomography for Subretinal Gene Therapy Delivery. Retina. 2019;39(suppl 1):9-12.  https://doi.org/10.1097/IAE.0000000000001646
  41. Xue K, Groppe M, Salvetti AP, MacLaren RE. Technique of retinal gene therapy: delivery of viral vector into the subretinal space. Eye (Lond). 2017; 31(9):1308-1316. https://doi.org/10.1038/eye.2017.158
  42. Westenskow PD, Kurihara T, Bravo S, Feitelberg D, Sedillo ZA, Aguilar E, Friedlander M. Performing subretinal injections in rodents to deliver retinal pigment epithelium cells in suspension. J Vis Exp. 2015;(95):52247. https://doi.org/10.3791/52247
  43. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata KI, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N Engl J Med. 2017;376(11):1038-1046. https://doi.org/10.1056/NEJMoa1608368
  44. Pfau M, Michels S, Binder S, Becker MD. Clinical experience with the first commercially available intraoperative optical coherence tomography system. Ophthalmic Surg Lasers Imaging Retina. 2015;46(10):1001-1008. https://doi.org/10.3928/23258160-20151027-03
  45. Ehlers JP, Uchida A, Srivastava SK. Intraoperative optical coherence tomography-compatible surgical instruments for real-time image-guided ophthalmic surgery. Br J Ophthalmol. 2017;101(10):1306-1308. https://doi.org/10.1136/bjophthalmol-2017-310530
  46. Rico-Jimenez JJ, Hu D, Tang EM, Oguz I, Tao YK. Real-time OCT image denoising using a self-fusion neural network. Biomed Opt Express. 2022;13(3): 1398-1409. https://doi.org/10.1364/BOE.451029

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.