The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Machekhin V.A.

Tambov branch of S. Fyodorov Eye Microsurgery Federal State Institution, 1 Rasskazovskoe shosse, Tambov, Russian Federation, 392000;
Tambov State University named after G.R. Derzhavin, Medical Institute, 93 Sovetskaya St., Tambov, Russian Federation, 392000

Fabrikantov O.L.

Tambov branch of the Academician S.N. Fyodorov IRTC «Eye Microsurgery», Ministry of Health of the Russian Federation, 1 Rasskazovskoe shosse, Tambov, Russian Federation, 392000;
Tambov State University named after G.R. Derzhavin, Medical Institute, 93 Sovetskaya St., Tambov, Russian Federation, 392000

L’vov V.A.

Tambov branch of S. Fyodorov Eye Microsurgery Federal State Institution, 1 Rasskazovskoe highway, Tambov, Russian Federation, 392000

Applications of optical coherence tomography in glaucoma

Authors:

Machekhin V.A., Fabrikantov O.L., L’vov V.A.

More about the authors

Journal: Russian Annals of Ophthalmology. 2019;135(2): 130‑137

Read: 3470 times


To cite this article:

Machekhin VA, Fabrikantov OL, L’vov VA. Applications of optical coherence tomography in glaucoma. Russian Annals of Ophthalmology. 2019;135(2):130‑137. (In Russ.)
https://doi.org/10.17116/oftalma2019135021130

Recommended articles:
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
Non-invasive auto­mated methods for the diagnosis of periorbital skin tumors. Russian Annals of Ophthalmology. 2024;(5):137-145
The resu­lts of fistulizing glaucoma surgeries in pseudophackic patients. Russian Annals of Ophthalmology. 2025;(1):45-52

References:

  1. Huang D, Swanson EA, Lin CP, et al. Optical Coherence Tomography. Science. 1991;254(5035):1178-1181.
  2. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS. et al. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113(3):325-332. https://doi.org/10.1001/archopht.1995.01100030081025
  3. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study. Arch Ophthalmol. 1995;113:586-596. https://doi.org/10.1001/archopht.1995.01100050054031
  4. Schuman JS, Pedut-Kloizman T, Ellen Hertzmark E, et al. Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence Tomography. Ophthalmology. 1996;103(11):1889-1898. https://doi.org/10.1016/s0161-6420(96)30410-7
  5. Teesalu P, Tuulonen A, Juhani Airaksinen PJ, et al. Optical coherence tomography and localized defects of the retinal nerve fiber layer. Acta Ophthalmol Scand. 2000;78:49-52. https://doi.org/10.1034/j.1600-0420.2000.078001049.x
  6. Mistlberger A, Liebmann JM, Greenfield DS, et al. Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes. Ophthalmology. 1999;106(10):2027-2032. https://doi.org/10.1016/S0161-6420(99)90419-0
  7. Pieroth L, Schuman JS, Hertzmark E, et al. Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. Ophthalmology. 1999;106:570-579. https://doi.org/10.1016/S0161-6420(99)90118-5
  8. Blumenthal EZ, Williams JM, Weinreb RN, et al. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology. 2000;107:2278-2282. https://doi.org/10.1016/S0161-6420(00)00341-9
  9. Bowd C, Weinreb RN, Williams JM, Zangwill LM. The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol. 2000;118:22-26. https://doi.org/10.1001/archopht.118.1.22
  10. Hoh ST, Greenfield DS, Mistlberger A, et al. Optical coherence tomography and scanning laser polarimetry in normal, ocular hypertensive, and glaucomatous eyes. Am J Ophthalmol. 2000;129:129-135. https://doi.org/10.1016/S0002-9394(99)00294-9
  11. Zangwill LM, Williams J, Berry CC, et al. A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve fiber layer damage in glaucoma. Ophthalmology. 2000;107:1309-1315. https://doi.org/10.1016/s0161-6420(00)00168-8
  12. Kanamori A, Nakamura M, Escano MF, et al. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol. 2003;135:513-520. https://doi.org/10.1016/S0002-9394(02)02003-2
  13. Wollstein G, Schuman JS, Price LL, et al. Optical Coherence Tomography Longitudinal Evaluation of Retinal Nerve Fiber Layer Thickness in Glaucoma. Arch Ophthalmol. 2005;123(4):464-470. https://doi.org/10.1001/archopht.123.4.464
  14. Guedes V, Schuman JS, Hertzmark E, et al. Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes. Ophthalmology. 2003;110(1):177-189. https://doi.org/10.1016/S0161-6420(02)01564-6
  15. Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci. 1993;34:395-400.
  16. Frishman LJ, Shen FF, Du L, et al. The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci. 1996;37:125-141.
  17. Wygnanski T, Desatnik H, Quigley HA. Comparison of ganglion cell loss and cone loss in experimental glaucoma. Am J Ophthalmol. 1995;120:184-189. https://doi.org/10.1016/S0002-9394(14)72606-6
  18. Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci. 1998;39:2304-2320. https://doi.org/10.1167/iovs.04-0834
  19. Medeiros FA, Zangwill LM, Bowd CN, et al. Comparison of the GDx VCC Scanning Laser Polarimeter, HRT II Confocal Scanning Laser Ophthalmoscope, and Stratus OCT Optical Coherence Tomograph for the Detection of Glaucoma. Arch Ophthalmol. 2004;122:827-837. https://doi.org/10.1001/archopht.122.6.827
  20. Arthur SN, Aldridge AJ, De León-Ortega NJ, et al. Agreement in Assessing Cup-to-Disc Ratio Measurement Among Stereoscopic Optic Nerve Head Photographs, HRT II, and Stratus OCT. J Glaucoma. 2006;15(3):183-189. https://doi.org/10.1097/01.ijg.0000212216.19804
  21. Abe RY, Gracitelli CPB, Medeiros FA. The Use of Spectral-Domain Optical Coherence Tomography to Detect Glaucoma Progression. The Open Ophthalmology Journal. 2015;9:78-88. https://doi.org/10.2174/1874364101509010078
  22. Rao HL, Zangwill LM, Weinrcb RN. Comparison of Different Spectral Domain Optical Coherence Tomography Scanning Areas for Glaucoma Diagnosis. Ophthalmology. 2010;117:1692-1699. https://doi.org/10.1016/j.ophtha.2010.01.031
  23. Sung KR, Na JH, Lee Y. Glaucoma Diagnostic Capabilities of Optic Nerve Head Parameters as Determined by Cirrus HD Optical Coherence Tomography. J Glaucoma. 2012;21:498-504. https://doi.org/10.1097/ijg.0b013e318220dbb7
  24. Seol BR, Jeoung JW, Park KH. Glaucoma Detection Ability of Macular Ganglion Cell-Inner Plexiform Layer Thickness in Myopic Preperimetric. Glaucoma Investigative Ophthalmology & Visual Science. 2015;56:8306-8313. https://doi.org/10.1167/iovs.15-18141 Investigative 18141
  25. Sehi M, Grewal DS, Sheets CW, Greenfield DS. Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol. 2009;148:597-605. https://doi.org/10.1016/j.ajo.2009.05.030
  26. Tan O, Chopra V, Lu AT, et al. Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography. Ophthalmology. 2009;116(12):2305-2314. https://doi.org/10.1016/j.ophtha.2009.05.025
  27. Knight OJ, Chang RT, Feuer WJ, Budenz DL. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmology. 2009;116:1271-1277. https://doi.org/10.1016/j.ophtha.2008.12.032
  28. Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, et al. Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol. 2009;93:775-781. https://doi.org/10.1136/bjo.2008.150698
  29. Gonzalez-Garcia AO, Vizzeri G, Bowd CH, et al. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus Optical Cogerence Tomography measurements. Am J Ophthalmol. 2009;147(6):1067-1074. https://doi.org/10.1016/j.ajo.2008.12.032
  30. Rao HL, Leite MT, Weinreb RN, et al. Effect of diseas severity and Optic disc size on diagnostic accuracy of RTVue Spectral domen optical cogerence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(3):1290-1296. https://doi.org/10.1167/iovs.10-5546
  31. Leite MT, Rao HL, Zangwill LM, Weinreb RN, Medeiros FA. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011;118:1334-1339. https://doi.org/10.1016/j.ophtha.2010.11.029
  32. Leung CK, Cheung CY, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116(7):1257-1263. https://doi.org/10.1016/j.ophtha.2009.04.013
  33. Akopyan VS, Semenova NS, Filonenko IV, Tsysar MA. Evaluation of ganglion cell complex measurements in primary open-angle glaucoma. Opthalmologia. 2011;8(1):20-26.
  34. Oli AD, Joshi D. Can ganglion cell complex assessment on cirrus HD OCT aid in detection of early glaucoma? Saudi J Ophthalmol. 2015;29(3):201-204. https://doi.org/10.1016/j.sjopt.2015.02.007
  35. Takayama K, Durbin M, Nakano N, et al. A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:6904-6913. https://doi.org/10.1167/iovs.12-10210
  36. Akashi A, Nakamura M, Masashi Fujihara M, et al. Comparative assessment for the ability of cirrus, RTVue and 3D OCT to diagnose glaucoma. Invest Ophthalmol Vis Sci. 2013;54:4478-4484. https://doi.org/10.1167/iovs.12-11268
  37. Begum VU, Uday K, Addepalli, Ravi K Yadav. Ganglion Cell-Inner Plexiform Layer Thickness of High Definition Optical Coherence Tomography in Perimetricand Preperimetric Glaucoma. Invest Ophthalmol Vis Sci. 2014;55:4768-4775. https://doi.org/10.1167/iovs.14-14598
  38. Phuc VLe, Xinbo Zhang, Brian A Francis. Advanced Imaging for Glaucoma Study: Design, Baseline Characteristics, and Inter-Site Comparison. Am J Ophthalmol. 2015;159(2):393-403. https://doi.org/10.1016/j.ajo.2014.11.010
  39. Le PV, Zhang X, Francis BA, et al. Advanced imaging for glaucoma study: design, baseline characteristics, and inter-site comparison. Am J Ophthalmol. 2015;159:393-403. https://doi.org/10.1016/j.ajo.2014.11.010
  40. Leung ChK, Chi MB, Cong YeBM, et al. Retinal Nerve Fiber Layer Imaging with Spectral’Domain Optical Coherence Tomography A Study on Diagnostic Agreement with Heidelberg Retinal Tomograph. Ophthalmology. 2010;117:267-274. https://doi.org/10.1016/j.ophtha.2009.06.061
  41. Foo L, Perera ShA, Cheung CY, et al. Comparison of scanning laser ophthalmoscopy and high-definition optical coherence tomography measurements of optic disc parameters. Br J Ophthalmol. 2012;96:576-580. https://doi.org/10.1136/bjophthalmol-2011-300835
  42. Hoffmann EM, Bowd C, Medeiros FA, et al. Agreement among 3 optical mm methods the assessment the optic disc topography. Qphthalmology. 2005;112:49-56. https://doi.org/10.1016/j.ophtha.2005.07.003
  43. Iliev M, Meyenberg A, Garweg JG. Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II. Eye. 2006;20:1288-1299. https://doi.org/10.1038/sj.eye.6702101
  44. Calvo P, Ferreras A, Abadia B. Assessment of the Optic Disc Morphology Using Spectral-Domain Optical Coherence Tomography and Scanning Laser Ophthalmoscopy. Bio Med Research International. 2014;Article ID 275654. Accessed October 20, 2017. Available at https://www.hindawi.com/journals/bmri/2014/275654/cta/ https://doi.org/10.1155/2014/275654
  45. Shpak AA, Malakhanova MK, Ogorodnikova SN. Evaluation of stereometric parameters of optic disc and nerve fiber layer using HRT III. Report 3: Measurement error of spectral-domain optical coherence tomography compared with Heidelberg retinal tomograph III. Vestnik oftal’mologii. 2011;127(2):46-48. (In Russ.)
  46. Shpak AA, Sevost’yanova MK. Comparative value of Heidelberg retina tomography and Spectral-domain optical coherence tomography in diagnosis of initial glaucoma. Oftal’mokhirurgiya. 2011;4:40-44. (In Russ.)
  47. Shpak AA, Sevost’yanova MK. Evaluation of the optic disc by spectral-domain optical coherence tomography and Heidelberg retinal tomography in diagnosis of the primary open-angle glaucoma. Oftal’mokhirurgiya. 2014;1:60-63. (In Russ.)
  48. Riga F, Georgalas I, Tsikripis P, Papaconstantinou D. Comparison study of OCT, HRT and VF findings among normal controls and patients with pseudoexfoliation, with or without increased IOP. Clinical Ophthalmology. 2014;8:2441-2447. https://doi.org/10.2147/OPTH.S75130
  49. Begum VU, Addepalli UK, Senthil S, et al. Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma. Indian J Ophthalmol. 2016;64(4):277-284. https://doi.org/10.4103/0301-4738.182938
  50. Fanihagh1 F, Kremmer S, Anastassiou1 G, et al. Optical Coherence Tomography, Scanning Laser Polarimetry and Confocal Scanning Laser Ophthalmoscopy in Retinal Nerve Fiber Layer Measurements of Glaucoma Patients. The Open Ophthalmology Journal. 2015;9:41-48. https://doi.org/10.2174/1874364101509010041
  51. Lai E, Wollstein G, Price LL, et al. Optical Coherence Tomography Disc Assessment in Optic Nerves With Peripapillary Atrophy. Ophthalmic Surg Lasers Imaging. 2003;34(6):498-504.
  52. Schuman JS, Wollstein G, Farra T, et al. Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 2003;135:504-512. https://doi.org/10.1016/S0002-9394(02)02093-7
  53. Iliev ME, Meyenberg A, Garweg JG. Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II. Eye (Lond). 2006;20(11):1288-1289. https://doi.org/10.1038/sj.eye.6702101
  54. Moghimi S, Hosseini H, Riddle J, Lee GY, Bitrian E Giac. Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2012;53(8):4519-4530. https://doi.org/10.1167/iovs.11-8362
  55. Resch H, Peak G, Pereira I, Vass C. Comparison of optic disc parameters using spectral domain cirrus high-definition optical coherence tomography and confocal scanning laser ophthalmoscopy in normal eyes. Acta Ophthalmol. 2012;90(3):225-229. https://doi.org/10.1111/j.1755-3768.2012.02385.x
  56. Mwanza JC, Oakley JD, Budenz DL.rs. Cirrus Optical Coherence Tomography Normative Database Study Group. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011;118:241-248. https://doi.org/10.1016/j.ophtha.2010.06.036
  57. Kurysheva NI, Parshunina OA. Optical coherence tomography in glaucoma optic neuropathy diagnostics. Part 1. Natsional’nyi zhurnal glaukoma. 2016;15(1):86-96. (In Russ.)
  58. Kurysheva NI. Optical coherence tomography in glaucoma optic neuropathy diagnostics. Part 2. Natsional’nyi zhurnal glaukoma. 2016;15(3):60-70. (In Russ.)
  59. Machekhin VA, L’vov VA. Determination of the optic disc borders according (HRT 3) technology and optical coherence tomography (RTVue-100). Novosti glakomy. 2018;1:66-70. Available at: http://www.glaucomanews.ru/files/pdf/GlaucomaNews-2018-1(45).pdf (In Russ.)

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.