The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Nedugov V.G.

Samara National Research University (Samara University)

Nedugov G.V.

Samara State Medical University

Thermometrical determination of the postmortem interval by non-linear optimization method

Authors:

Nedugov V.G., Nedugov G.V.

More about the authors

Journal: Forensic Medical Expertise. 2024;67(5): 19‑23

Read: 1196 times


To cite this article:

Nedugov VG, Nedugov GV. Thermometrical determination of the postmortem interval by non-linear optimization method. Forensic Medical Expertise. 2024;67(5):19‑23. (In Russ.)
https://doi.org/10.17116/sudmed20246705119

Recommended articles:
Fore­nsic medi­cal evaluation of idiomuscular contracture. Fore­nsic Medi­cal Expe­rtise. 2025;(2):9-13

References:

  1. Marshall TK, Hoare FE. Estimating the time of death. The rectal cooling after death and its mathematical expression. Journal of Forensic Sciences. 1962;7(1):56-81. 
  2. Marshall TK. The use of body temperature in estimating the time of death and its limitations. Med Sci Law. 1969;9(3):178-182.  https://doi.org/10.1177/002580246900900304
  3. Brown A, Marshall TK. Body temperature as a means of estimating the time of death. Forensic Sci. 1974;4(2):125-133.  https://doi.org/10.1016/0300-9432(74)90093-4
  4. Henssge C. Death time estimation in case work. I. The rectal temperature time of death nomogram. Forensic Sci Int. 1988;38(3-4):209-236.  https://doi.org/10.1016/0379-0738(88)90168-5
  5. Henssge C. Rectal temperature time of death nomogram: dependence of corrective factors on the body weight under stronger thermic insulation conditions. Forensic science international. 1992;54(1):51-66.  https://doi.org/10.1016/0379-0738(92)90080-G
  6. Potente S, Kettner M, Ishikawa T. Time since death nomographs implementing the nomogram, body weight adjusted correction factors, metric and imperial measurements. International journal of legal medicine. 2019;133(2):491-499.  https://doi.org/10.1007/s00414-018-1928-z
  7. Giana FE, Onetto MA, Pregliasco RG. Uncertainty in the estimation of the postmortem interval based on rectal temperature measurements: A Bayesian approach. Forensic science international. 2020;317:110505. https://doi.org/10.1016/j.forsciint.2020.110505
  8. Green MA, Wright JC. Postmortem interval estimation from body temperature data only. Forensic science international. 1985;28(1):35-46.  https://doi.org/10.1016/0379-0738(85)90163-x
  9. Green MA, Wright JC. The theoretical aspects of the time dependent Z equation as a means of postmortem interval estimation using body temperature data only. Forensic science international. 1985;28(1):53-62.  https://doi.org/10.1016/0379-0738(85)90165-3
  10. Nokes LD, Brown A, Knight B. A self-contained method for determining time since death from temperature measurements. Medicine, science and the law. 1983;23(3):166-170.  https://doi.org/10.1177/002580248302300303
  11. Brown A, Hicks B, Knight B, Nokes LD. Determination of time since death using the double exponential cooling model. Medicine, science and the law. 1985;25(3):223-227.  https://doi.org/10.1177/002580248502500310
  12. Rodrigo MR. Time of death estimation from temperature readings only: A Laplace transform approach. Applied Mathematics Letters. 2015;39:47-52.  https://doi.org/10.1016/j.aml.2014.08.016
  13. Rodrigo MR. A Nonlinear Least Squares Approach to Time of Death Estimation Via Body Cooling. Journal of forensic sciences. 2016;61(1):230-233.  https://doi.org/10.1111/1556-4029.12875
  14. Moré JJ, Sorensen DC, Hillstrom KE, Garbow BS. The MINPACK Project. In Cowell WJ. Sources and Development of Mathematical Software. USA: Prentice-Hall; 1984.
  15. Nedugov GV. Numerical method for solving double exponential models of corpse cooling in the determination of the time of death. Forensic Medical Expertise. 2021;64(6):25-28. (In Russ.). https://doi.org/10.17116/sudmed20216406125
  16. Nocedal J, Wright SJ. Numerical Optimization. New York: Springer-Verlag; 2006. https://doi.org/10.1007/978-0-387-40065-5
  17. Powell MJD. A Hybrid Method for Nonlinear Equations. In: Rabinowitz P. Numerical Methods for Nonlinear Algebraic Equations. London, New York: Gordon and Breach Science Publishers; 1970.
  18. Kil’diushov EM, Buromskiĭ IV. The use of correction factors in establishing the time of death at the site where the corpse was found with the help of the nomograms of C. Henssge. Forensic Medical Expertise.1997;40(4):4-7. (In Russ.).
  19. Kil’diushov EM. The specificity of thermometry of cadavers of newborns in prescribing the time of the coming of death. Forensic Medical Expertise. 2005;48(1):18-21. (In Russ.).
  20. Hubig M, Muggenthaler H, Sinicina I, Mall G. Body mass and corrective factor: impact on temperature-based death time estimation. International journal of legal medicine. 2011;125(3):437-444.  https://doi.org/10.1007/s00414-011-0551-z
  21. Dani LM, Tóth D, Frigyik AB, Kozma Z. Beyond Henssge’s Formula: Using Regression Trees and a Support Vector Machine for Time of Death Estimation in Forensic Medicine. Diagnostics (Basel). 2023;13(7):1260. https://doi.org/10.3390/diagnostics13071260

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.