The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Bofanova N.S.

Penza State University

Miltykh I.S.

Penza State University

Zenin O.K.

Penza State University

Pathogenesis of certain neurological complications of new coronavirus infection: a foreign literature review

Authors:

Bofanova N.S., Miltykh I.S., Zenin O.K.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2022;25(8): 98‑104

Read: 1621 times


To cite this article:

Bofanova NS, Miltykh IS, Zenin OK. Pathogenesis of certain neurological complications of new coronavirus infection: a foreign literature review. Russian Journal of Preventive Medicine. 2022;25(8):98‑104. (In Russ.)
https://doi.org/10.17116/profmed20222508198

Recommended articles:
Modern view on the etiology of gallstone disease in children. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):59-68
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146
Black Acanthosis: Diagnosis and Treatment Issues. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(6):709-712

References:

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine. 2020;382(8):727-733.  https://doi.org/10.1056/NEJMoa2001017
  2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology. 2020;5(4):536-544.  https://doi.org/10.1038/s41564-020-0695-z
  3. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798): 270-273.  https://doi.org/10.1038/s41586-020-2012-7
  4. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology. 2016;24(6):490-502.  https://doi.org/10.1016/j.tim.2016.03.003
  5. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Advances in Virus Research. 2011;81:85-164.  https://doi.org/10.1016/B978-0-12-385885-6.00009-2
  6. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Current Topics in Microbiology and Immunology. 2018; 419:1-42.  https://doi.org/10.1007/82_2017_25
  7. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224): 565-574.  https://doi.org/10.1016/S0140-6736(20)30251-8
  8. Rathi S, Ish P, Kalantri A, Kalantri S. Hydroxychloroquine prophylaxis for COVID-19 contacts in India. The Lancet Infectious Diseases. 2020;20(10): 1118-1119. https://doi.org/10.1016/S1473-3099(20)30313-3
  9. Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, Mommaas AM, Snijder EJ. SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum. PLoS Biology. 2008;6(9):e226. https://doi.org/10.1371/journal.pbio.0060226
  10. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry. 2020;295(15):4773-4779. https://doi.org/10.1074/jbc.AC120.013056
  11. Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Götte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry. 2020;295(20):6785-6797. https://doi.org/10.1074/jbc.RA120.013679
  12. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O’Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d’Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459-468.  https://doi.org/10.1038/s41586-020-2286-9
  13. Hogue BG, Machamer CE. Coronavirus Structural Proteins and Virus Assembly. Nidoviruses. ASM Press; 2014;179-200.  https://doi.org/10.1128/9781555815790.ch12
  14. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis. 2020;10(2): 102-108.  https://doi.org/10.1016/j.jpha.2020.03.001
  15. Jin DY, Zheng BJ. Roles of spike protein in the pathogenesis of SARS coronavirus. Hong Kong Medical Journal. 2009;14(2):37-40. 
  16. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein. Viruses. 2012;4(6): 1011-1033. https://doi.org/10.3390/v4061011
  17. Wan S, Xiang Y, Fang W, Zheng Y, Li B, Hu Y, Lang C, Huang D, Sun Q, Xiong Y, Huang X, Lv J, Luo Y, Shen L, Yang H, Huang G, Yang R. Clinical features and treatment of COVID‐19 patients in northeast Chongqing. Journal of Medical Virology. 2020;92(7):797-806.  https://doi.org/10.1002/jmv.25783
  18. Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proceedings of the National Academy of Sciences. 2005;102(35):12543-12547. https://doi.org/10.1073/pnas.0503203102
  19. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-269.  https://doi.org/10.1038/s41586-020-2008-3
  20. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proceedings of the National Academy of Sciences. 2014;111(42):15214-15219. https://doi.org/10.1073/pnas.1407087111
  21. Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: A peptidase in the renin—angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology and Therapeutics. 2010;128(1): 119-128.  https://doi.org/10.1016/j.pharmthera.2010.06.003
  22. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nature Reviews Microbiology. 2009;7(6):439-450.  https://doi.org/10.1038/nrmicro2147
  23. Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proceedings of the National Academy of Sciences. 2004;101(12):4240-4245. https://doi.org/10.1073/pnas.0306446101
  24. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology. 2016;14(8):523-534.  https://doi.org/10.1038/nrmicro.2016.81
  25. Wang SF, Chen KH, Chen M, Li WY, Chen YJ, Tsao CH, Yen MY, Huang JC, Chen YM. Human-Leukocyte Antigen Class I Cw 1502 and Class II DR 0301 Genotypes Are Associated with Resistance to Severe Acute Respiratory Syndrome (SARS) Infection. Viral Immunology. 2011;24(5):421-426.  https://doi.org/10.1089/vim.2011.0024
  26. Hajeer A, Balkhy H, Johani S, Yousef M, Arabi Y. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection. Annals of Thoracic Medicine. 2016;11(3):211.  https://doi.org/10.4103/1817-1737.185756
  27. Li G, Chen X, Xu A. Profile of Specific Antibodies to the SARS-Associated Coronavirus. New England Journal of Medicine. 2003;349(5):508-509.  https://doi.org/10.1056/NEJM200307313490520
  28. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, Ueno M, Sakata H, Kondo K, Myose N, Nakao A, Takeda M, Haro H, Inoue O, Suzuki-Inoue K, Kubokawa K, Ogihara S, Sasaki T, Kinouchi H, Kojin H, Ito M, Onishi H, Shimizu T, Sasaki Y, Enomoto N, Ishihara H, Furuya S, Yamamoto T, Shimada S. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International Journal of Infectious Diseases. 2020; 94:55-58.  https://doi.org/10.1016/j.ijid.2020.03.062
  29. Domingues RB, Mendes-Correa MC, de Moura Leite FBV, Sabino EC, Salarini DZ, Claro I, Santos DW, de Jesus JG, Ferreira NE, Romano CM, Soares CAS. First case of SARS-COV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. Journal of Neurology. 2020;267(11):3154-3156. https://doi.org/10.1007/s00415-020-09996-w
  30. Huang YH, Jiang D, Huang JT. SARS-CoV-2 Detected in Cerebrospinal Fluid by PCR in a Case of COVID-19 Encephalitis. Brain, Behavior, and Immunity. 2020;87:149.  https://doi.org/10.1016/j.bbi.2020.05.012
  31. Virhammar J, Kumlien E, Fällmar D, Frithiof R, Jackmann S, Sköld MK, Kadir M, Frick J, Lindeberg J, Olivero-Reinius H, Ryttlefors M, Cunningham JL, Wikström J, Grabowska A, Bondeson K, Bergquist J, Zetterberg H, Rostami E. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology. 2020;95(10):445-449.  https://doi.org/10.1212/WNL.0000000000010250
  32. Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological Complications of Coronavirus Disease (COVID-19): Encephalopathy. Cureus. 2020;12(3): e7352. https://doi.org/10.7759/cureus.7352
  33. Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, Sordillo EM, Fowkes M. Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). Journal of Medical Virology. 2020;92(7):699-702.  https://doi.org/10.1002/jmv.25915
  34. Leonardi M, Padovani A, McArthur JC. Neurological manifestations associated with COVID-19: a review and a call for action. Journal of Neurology. 2020;267(6):1573-1576. https://doi.org/10.1007/s00415-020-09896-z
  35. Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. Journal of Neurology. 2020;267(8):2179-2184. https://doi.org/10.1007/s00415-020-09929-7
  36. Desforges M, Le Coupanec A, Brison É, Meessen-Pinard M, Talbot PJ. Neuroinvasive and neurotropic human respiratory coronaviruses: Potential neurovirulent agents in humans. Advances in Experimental Medicine and Biology. 2014;807:75-96.  https://doi.org/10.1007/978-81-322-1777-0_6
  37. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, Talbot PJ. Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses. 2019;12(1):14.  https://doi.org/10.3390/v12010014
  38. Chen R, Wang K, Yu J, Howard D, French L, Chen Z, Wen C, Xu Z. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Frontiers in Neurology. 2021;11:573095. https://doi.org/10.3389/fneur.2020.573095
  39. Swanson PA, McGavern DB. Viral diseases of the central nervous system. Current Opinion in Virology. 2015;11:44-54.  https://doi.org/10.1016/j.coviro.2014.12.009
  40. Ahmed MU, Hanif M, Ali MJ, Haider MA, Kherani D, Memon GM, Karim AH, Sattar A. Neurological Manifestations of COVID-19 (SARS-CoV-2): A Review. Frontiers in Neurology. 2020;11:518.  https://doi.org/10.3389/fneur.2020.00518
  41. Keyhanian K, Umeton RP, Mohit B, Davoudi V, Hajighasemi F, Ghasemi M. SARS-CoV-2 and nervous system: From pathogenesis to clinical manifestation. Journal of Neuroimmunology. 2021;350:577436. https://doi.org/10.1016/j.jneuroim.2020.577436
  42. Cooper KW, Brann DH, Farruggia MC, Bhutani S, Pellegrino R, Tsukahara T, Weinreb C, Joseph PV, Larson ED, Parma V, Albers MW, Barlow LA, Datta SR, Di Pizio A. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron. 2020;107(2):219-233.  https://doi.org/10.1016/j.neuron.2020.06.032
  43. Qiu C, Cui C, Hautefort C, Haehner A, Zhao J, Yao Q, Zeng H, Nisenbaum EJ, Liu L, Zhao Y, Zhang D, Levine CG, Cejas I, Dai Q, Zeng M, Herman P, Jourdaine C, de With K, Draf J, Chen B, Jayaweera DT, Denneny JC 3rd, Casiano R, Yu H, Eshraghi AA, Hummel T, Liu X, Shu Y, Lu H. Olfactory and Gustatory Dysfunction as an Early Identifier of COVID-19 in Adults and Children: An International Multicenter Study. Otolaryngology — Head and Neck Surgery. 2020;163(4):714-721.  https://doi.org/10.1177/0194599820934376
  44. Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, Chance R, Macaulay IC, Chou HJ, Fletcher RB, Das D, Street K, de Bezieux HR, Choi YG, Risso D, Dudoit S, Purdom E, Mill J, Hachem RA, Matsunami H, Logan DW, Goldstein BJ, Grubb MS, Ngai J, Datta SR. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Science Advances. 2020;6(31):eabc5801. https://doi.org/10.1126/sciadv.abc5801
  45. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, Dequanter D, Blecic S, El Afia F, Distinguin L, Chekkoury-Idrissi Y, Hans S, Delgado IL, Calvo-Henriquez C, Lavigne P, Falanga C, Barillari MR, Cammaroto G, Khalife M, Leich P, Souchay C, Rossi C, Journe F, Hsieh J, Edjlali M, Carlier R, Ris L, Lovato A, De Filippis C, Coppee F, Fakhry N, Ayad T, Saussez S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. European Archives of Oto-Rhino-Laryngology. 2020;277(8):2251-2261. https://doi.org/10.1007/s00405-020-05965-1
  46. Tsai ST, Lu MK, San S, Tsai CH. The Neurologic Manifestations of Coronavirus Disease 2019 Pandemic: A Systemic Review. Frontiers in Neurology. 2020;11:498.  https://doi.org/10.3389/fneur.2020.00498
  47. Favas TT, Dev P, Chaurasia RN, Chakravarty K, Mishra R, Joshi D, Mishra VN, Kumar A, Singh VK, Pandey M, Pathak A. Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions. Neurological Sciences. 2020;41(12):3437-3470. https://doi.org/10.1007/s10072-020-04801-y
  48. Jiang XX, Coffee M, Bari A, Wang J, Jiang X, Huang J, Shi J, Dai J, Cai J, Zhang T, Wu Z, He G, Huang Y. Towards an Artificial Intelligence Framework for Data-Driven Prediction of Coronavirus Clinical Severity. Computers, Materials and Continua. 2020;62(3):537-551.  https://doi.org/10.32604/cmc.2020.010691
  49. Lippi G, Wong J, Henry BM. Myalgia may not be associated with severity of coronavirus disease 2019 (COVID-19). World Journal of Emergency Medicine. 2020;11(3):193.  https://doi.org/10.5847/wjem.j.1920-8642.2020.03.013
  50. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine. 2020;8(5):475-481.  https://doi.org/10.1016/S2213-2600(20)30079-5
  51. Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, Chen H, Wang D, Liu N, Liu D, Chen G, Zhang Y, Li D, Li J, Lian H, Niu S, Zhang L, Zhang J. Characteristics of COVID-19 infection in Beijing. Journal of Infection. 2020; 80(4):401-406.  https://doi.org/10.1016/j.jinf.2020.02.018
  52. Kim ES, Chin BS, Kang CK, Kim NJ, Kang YM, Choi JP, Oh DH, Kim JH, Koh B, Kim SE, Yun NR, Lee JH, Kim JY, Kim Y, Bang JH, Song KH, Kim HB, Chung KH, Oh MD; Korea National Committee for Clinical Management of COVID-19. Clinical Course and Outcomes of Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection: a Preliminary Report of the First 28 Patients from the Korean Cohort Study on COVID-19. Journal of Korean Medical Science. 2020;35(13):e142. https://doi.org/10.3346/jkms.2020.35.e142
  53. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506.  https://doi.org/10.1016/S0140-6736(20)30183-5
  54. Borges do Nascimento IJ, Cacic N, Abdulazeem HM, von Groote TC, Jayarajah U, Weerasekara I, Esfahani MA, Civile VT, Marusic A, Jeroncic A, Carvas Junior N, Pericic TP, Zakarija-Grkovic I, Meirelles Guimarães SM, Luigi Bragazzi N, Bjorklund M, Sofi-Mahmudi A, Altujjar M, Tian M, Arcani DMC, O’Mathúna DP, Marcolino MS. Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. Journal of Clinical Medicine. 2020;9(4):941.  https://doi.org/10.3390/jcm9040941
  55. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents. 2020;55(3):105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  56. Belvis R. Headaches during COVID‐19: My Clinical Case and Review of the Literature. Headache. 2020;60(7):1422-1426. https://doi.org/10.1111/head.13841
  57. Uygun Ö, Ertaş M, Ekizoğlu E, Bolay H, Özge A, Kocasoy Orhan E, Çağatay AA, Baykan B. Headache characteristics in COVID-19 pandemic-a survey study. The Journal of Headache and Pain. 2020;21(1):121.  https://doi.org/10.1186/s10194-020-01188-1
  58. Manchikanti L, Vanaparthy R, Atluri S, Sachdeva H, Kaye AD, Hirsch JA. COVID-19 and the Opioid Epidemic: Two Public Health Emergencies That Intersect With Chronic Pain. Pain and Therapy. 2021;10(1):269-286.  https://doi.org/10.1007/s40122-021-00243-2
  59. Mun CJ, Campbell CM, McGill LS, Aaron RV. The Early Impact of COVID-19 on Chronic Pain: A Cross-Sectional Investigation of a Large Online Sample of Individuals with Chronic Pain in the United States, April to May, 2020. Pain Medicine. 2021;22(2):470-480.  https://doi.org/10.1093/pm/pnaa446
  60. Clauw DJ, Häuser W, Cohen SP, Fitzcharles MA. Considering the potential for an increase in chronic pain after the COVID-19 pandemic. Pain. 2020;161(8):1694-1697. https://doi.org/10.1097/j.pain.0000000000001950
  61. Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Majewski P, Rotter I, Kotfis K. COVID-19: Pain Management in Patients with SARS-CoV-2 Infection — Molecular Mechanisms, Challenges, and Perspectives. Brain Sciences. 2020;10(7):465.  https://doi.org/10.3390/brainsci10070465
  62. Bofanova NS, Masaeva RR, Verbitskaya OS, Koldova TG, Yadrentseva UV. Chronic pain in the 11th revision of the International Classification of Diseases. Rossijskij zhurnal boli. 2021;19(1):36-39. (In Russ.). https://doi.org/10.17116/pain20211901136
  63. Bofanova NS, Bulanov AA, Yavorsky AS, Alekhina EV. Virtual reality as a modern trend in rehabilitation of patients with phantom limb pain. Rossijskij zhurnal boli. 2021;19(2):33-37. (In Russ.). https://doi.org/10.17116/pain20211902133
  64. Shepherd AJ, Mickle AD, Golden JP, Mack MR, Halabi CM, de Kloet AD, Samineni VK, Kim BS, Krause EG, Gereau RW 4th, Mohapatra DP. Macrophage angiotensin II type 2 receptor triggers neuropathic pain. Proceedings of the National Academy of Sciences. 2018;115(34):E8057-E8066. https://doi.org/10.1073/pnas.1721815115
  65. Chow CCN, Magnussen J, Ip J, Su Y. Acute transverse myelitis in COVID-19 infection. BMJ Case Reports. 2020;13(8):e236720. https://doi.org/10.1136/bcr-2020-236720
  66. Fiala K, Martens J, Abd-Elsayed A. Post-COVID Pain Syndromes. Current Pain and Headache Reports. Published online March 10, 2022. https://doi.org/10.1007/s11916-022-01038-6

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.