Согласно имеющимся данным, в России примерно 27% взрослого населения страдают неалкогольной жировой болезнью печени [1], одной из причин которой является сахарный диабет 2-го типа (СД2) в сочетании с ожирением. У больных с ожирением наблюдается инсулинорезистентность и гиперинсулинемия, что ведет к накоплению в печени свободных жирных кислот (СЖК) и триглицеридов. При этом происходит торможение окисления СЖК и выделение липидов в кровяное русло, что приводит к накоплению жира в печени и развитию неалкогольного стеатогепатита (НАСГ). СЖК являются основным источником образования активных форм кислорода (АФК) [2]. АФК выступают в качестве одних из главных индукторов запрограммированной гибели клеток — апоптоза. Физиологическая роль апоптоза заключается в поддержании гомеостаза организма. Сигнальные пути передачи апоптотического сигнала другим программам жизнедеятельности клеток часто переплетаются между собой, создавая сложную картину внутри- и межклеточных взаимодействий, составляющих основу регуляции клеточного роста, дифференцировки и гибели клеток. Запуску запрограммированной гибели клетки могут способствовать внутриклеточные сигналы, а также внешние рецепторопосредованные механизмы [3]. В настоящее время идентифицированы протеолитические ферменты (каспазы), вовлеченные в процесс апоптоза, которые расщепляют свои специфические субстраты по остаткам аспарагиновой кислоты. Каспазы подразделяются на инициаторы, эффекторы и стимуляторы. Одним из инициаторов является каспаза-1, которая активирует каспазу-3, относящуюся к эффекторам [4]. В то же время отмечается возможность активации каспазы-1 под действием активированной каспазы-3 [5]. Известно, что каспазные эффекторы расщепляют различные белки, ответственные за обеспечение жизненно важных процессов, что ведет к гибели клетки. Доказано, что активация каспаз вызывает запуск протеолитического каскада реакций, ведущих к программируемой клеточной смерти. Активация каспаз может приводить к реорганизации цитоскелета, нарушению структуры, репликации и репарации ДНК, прерыванию сплайсинга, разрыву ядерных структур и дезинтеграции клеток на апоптические тела [6]. В процессе апоптоза происходит активация эндонуклеаз, которые обладают процессивным действием, сопровождающимся распадом хроматина путем гидролиза ДНК. Сначала происходит распад на крупные домены, затем межнуклеосомная фрагментация ДНК и в конечном счете — к гидролизу ДНК до низкомолекулярных утилизируемых фрагментов [7]. В настоящее время представляют особый интерес средства, обладающие антиоксидантными и антиапоптотическими свойствами, основой которых служат естественные метаболиты клеток. В этой связи актуальным является исследование действия мелатонина — нейрогормона, продуцируемого эпифизом, а также клетками диффузной нейроэндокринной системы (АПУД-системы). Помимо классических эффектов, а именно участия в синхронизации биоритмов [8], регуляции цикла сон—бодрствование [9], влияния на репродуктивную и иммунную систему [10, 11], данный гормон способен обеспечивать нейтрализацию ряда АФК, тем самым снижая интенсивность свободнорадикального окисления биомолекул и деградацию ДНК [12]. Немаловажное значение имеют также противовоспалительные свойства мелатонина, связанные с его способностью блокировать транскрипционные факторы, активирующие противовоспалительные цитокины [18]. В этой связи несомненный интерес вызывает исследование возможности применения мелатонина при данной патологии, так как он является антиоксидантом широкого спектра действия, а также способен снижать степень воспалительных процессов.
Цель настоящей работы — оценка маркеров повреждения печени, показателей углеводного и липидного обмена, активности каспазы-1, каспазы-3 и степени фрагментации ДНК у больных с НАСГ, развивающимся на фоне СД2 при проведении комбинированной терапии с мелаксеном в сравнении с базисным лечением.
Материал и методы
В исследование были включены 59 человек с НАСГ, возникшем на фоне СД2. Среди них 23 (38,9%) мужчины и 36 (61,0%) женщин, возраст больных 38—75 лет (средний 56,5±17,5 года). Средняя продолжительность СД2 составляла 3,6±2,7 года. Диагноз неалкогольного стеатогепатита был поставлен на основании клинических признаков заболевания, биохимического исследования крови, данных УЗИ печени. Из сопутствующих заболеваний чаще всего регистрировались: ожирение у 59 (100%) больных, артериальная гипертензия у 53 (89,8%), хроническая сердечная недостаточность у 52 (88,1%), хронический гастрит у 33 (55,9%).
В качестве критериев исключения из исследования рассматривали: вирусные гепатиты, синдром холестаза, злокачественные новообразования, острый инфаркт миокарда, острое нарушение мозгового кровообращения, хроническую почечную недостаточность.
Больные были разделены на две группы. 1-я группа пациентов (n=33) находилась на базисном лечении: пероральные сахароснижающие препараты (препараты сульфонилмочевины и бигуаниды), витамины: В1, В6, В12 (5% растворы по 1 мл внутримышечно 1 раз в день), гепатопротекторы: эссливер форте (эссенциальные фосфолипиды, 300 мг) по 2 таблетки 3 раза в день, внутрь; карсил (эквивалент силимарина 35 мг) по 2 таблетки 3 раза в день во время еды, внутрь; гиполипидемическая терапия: статины (симвастатин 10 мг) 1 раз в день, внутрь, в течение 10 дней. Пациенты 2-й группы (n=26) дополнительно к базисной терапии получали мелаксен (Unifarm, Inc., США) по 1 таблетке, содержащей 3 мг мелатонина, 1 раз в день за 30—40 мин перед сном в течение 10 дней.
Контрольную группу составили 65 практически здоровых лиц в возрасте от 21 года до 52 лет с нормальными показателями общего и биохимического анализов крови.
Принцип используемого метода определения активностей аланинаминотрансферазы (АлАТ) и аспартатаминотрансферазы (АсАТ) заключается в фотометрическом определении содержания пирувата или оксалоацетата в пробе на основе реакции с 2,4-динитрофенилгидразином. Активность гамма-глутамилтранспептидазы (ГГТП) оценивали по скорости реакции переноса глутамилового остатка с гамма-L-(+)-глутамил-4-нитроанилида на глицилглицин (Био-тест, PLIVA — Lachema Diagnostika). Исследование изменений липидного обмена проводилось биохимическими методами путем определения концентрации общего холестерина (ОХС), холестерина липопротеинов высокой плотности (ЛПВП), липопротеинов низкой плотности (ЛПНП) в сыворотке при помощи наборов реагентов (Био-Ла-Тест) ферментативным фотоколориметрическим методом на биохимическом анализаторе Klima 15MC (Испания). Индекс атерогенности (ИА) определяли как отношение разности ОХС и ЛПВП к ЛПВП [ИА = (ОХС минум ЛПВП)/ЛПВП]. Уровень глюкозы натощак и постпрандиальный уровень глюкозы оценивали с помощью глюкометра Сателлит Плюс. Уровень инсулина в сыворотке определяли общепринятым методом иммуноферментного анализа с помощью набора реактивов DRG (США). Концентрацию С-пептида определяли иммуноферментным методом (DRG, Австрия). Исследование гликированного гемоглобина (HbA1c) выполняли с использованием иммуноферментного метода на ИФА Униплан (по стандарту NGSP). Расчет индекса НОМА (показатель инсулинорезистентности) проводился по формуле: индекс НОМА= Ип · Гп / 22,5, где Ип — инсулин плазмы, ед/мл; Гп — глюкоза плазмы, ммоль /л. Значение индекса НОМА >2,7 расценивалось как инсулинорезистентность.
Активность каспаз-1 и -3 определяли с помощью набора реактивов Caspase 1 Assay Kit, Colorimetric и Caspase 3 Assay Kit, Colorimetric фирмы «Sigmа». В среду измерения добавляли коктейль ингибиторов протеаз (0,08 мМ апротинин, 1,5 мМ пепстатин А, 2 мМ лейпептин) в соотношении 100:1 (все реактивы фирмы «Sigma», CША). Колориметрический анализ активности каспаз основан на гидролизе пептидного субстрата ацетил-Tyr-Val-Ala-Asp-n-нитроанилида (Ac-YVAD-pNA) (в случае каспазы-1) и ацетил-Asp-Glu-Val-Asp-n-нитроанилида (Ac-DEVD-pNA) (в случае каспазы-3) с образованием остатка n–нитроанилида, имеющего максимум поглощения при 405 нм (молярный коэффициент поглощения = 10,5 М–1 см–1). Активность каспаз выражали в пмоль продукта, образующегося за 1 мин, в расчете на 1 мг белка.
ДНК выделяли из лейкоцитов крови фенольно-хлороформным методом. Фрагментацию ДНК выявляли с помощью электрофореза в агарозном геле в трис-ацетат-EDТА-буфере, содержащем бромистый этидий [13]. В качестве маркеров молекулярной массы использовали набор MassRuler, включающий маркеры от 1500 до 10 000 п.н., производства «Fermentas» (Литва).
Работа была одобрена этическим комитетом ВГМУ им Н.Н. Бурденко (протокол № 5 от 13.05.11). Перед проведением клинического исследования было получено информированное согласие всех пациентов в соответствии с принципами Хельсинкской декларации Всемирной медицинской организации (2008).
Статистическая обработка материала включала использование стандартных методов вариационной статистики (расчет средних значений (М), ошибку средних значений (m), t-критерия Стьюдента) и непараметрического теста Вилкоксона. Для сравнения параметров двух независимых групп (т.е. межгрупповое сравнение между комбинированным лечением с мелаксеном по сравнению с базисным лечением) использовали двусторонний U-критерий Манна—Уитни. При проведении статистической обработки использовали прикладные программы Statistica 6.0. Значимыми считались различия при р<0,05.
Результаты
Состояние функции печени у больных 1-й и 2-й групп до лечения по сравнению с контрольной группой характеризовалось возрастанием уровня активности АлАт в 1,7 (p<0,05) и 1,6 раза (p<0,05) соответственно по сравнению с верхней границей нормы (40 ЕД) (таблица). Для уровня АсАт также было характерно увеличение: в 1-й группе в 1,3 раза (p<0,05), во 2-й группе в 1,2 раза (p<0,05) по сравнению с верхней границей нормы (40 ЕД). После базисного лечения наблюдалось уменьшение активности АлАт и АсАт в 1,8 и 1,4 раза (p<0,05) соответственно. После комбинированного лечения с мелаксеном происходило снижение активности АлАт и АсАт в большей степени — в среднем в 2 раза (U; p<0,05) и 1,6 раза (U; p<0,05) соответственно. О нарушении функционирования печени у больных свидетельствовала также активность ГГТП, которая до назначения лечения была в среднем в 3,2 раза (p<0,05) выше нормы. После базисного лечения активность данного фермента снижалась в 2 раза (p<0,05), после комбинированного лечения с мелаксеном — в 2,7 раза (U; p<0,05).
Перед лечением уровень ЛПНП и ОХС был повышен у больных обеих групп в среднем в 2,8 (p<0,05) и 1,7 раза (p<0,05) соответственно. В 1-й группе пациентов, находящихся на базисном лечении, происходило уменьшение уровня ЛПНП и ОХС в 1,2 и 1,3 раза (p<0,05) соответственно (см. таблицу). Во 2-й группе пациентов происходило снижение содержания ЛПНП в 1,8 раза (U; p<0,05) и ОХС в 1,5 раза (U; p<0,05), что более значительно, чем в 1-й группе пациентов. При этом ИА после базисного лечения уменьшался в 1,4 раза (p<0,05), а после комбинированного лечения с мелаксеном — в 2,1 раза (U; p<0,05).
Концентрации инсулина в обеих группах больных до и после лечения находилась в пределах нормы. Однако наблюдались тенденции к его возрастанию после проводимой терапии. Так, в 1-й группе уровень инсулина увеличивался на 27% (p<0,05), а во 2-й группе — на 43% (p<0,05). Во всех группах больных имела место гипергликемия. Концентрация глюкозы натощак после базисного лечения уменьшалась в 1,4 раза (p<0,05), а после комбинированной терапии с мелаксеном — в 1,8 раза (U; p<0,05). Постпрандиальный уровень глюкозы после базисного лечения снижался в среднем в 1,4 раза (p<0,05), а после комбинированной терапии с мелаксеном — в 1,7 раза (U; p<0,05) (см. таблицу). Индекс НОМА-IR в 1-й группе больных был выше нормы в 3,9 раза (p<0,05), во 2-й — в 4 раза (p<0,05). После базисного лечения индекс НОМА-IR уменьшался на 7,3%, после комбинированного лечения с мелаксеном — на 24,6% (U; p<0,05).
Определение активности каспаз в сыворотке пациентов с НАСГ, развивающимся при СД2, выявило ее значительное возрастание. Так, активность каспазы-1 увеличивалась в 1,7 раза (р<0,05), каспазы-3 — в 1,8 раза (р<0,05) по сравнению с нормой (см. таблицу). Это свидетельствует об усилении интенсивности апоптотических процессов в организме больных. После базисного лечения активность каспазы-1 снижалась в 1,3 раза (р<0,05), однако достоверных изменений активности каспазы-3 выявлено не было. Комбинированное лечение с мелаксеном приводило к снижению активности каспазы-1 в 1,7 раза (U; р<0,05), каспазы-3 — в 1,6 раза (U; p<0,05).
Согласно данным электрофоретического анализа, ДНК, выделенная из лейкоцитов больных НАСГ, была фрагментирована по сравнению с ДНК контрольных проб (см. рисунок). В ходе деградации ДНК сначала образуются крупные фрагменты, длиной примерно 300 т.п.н., несколько позже — 30—50 т.п.н. На следующем этапе в ходе межнуклеосомной деградации ДНК под действием кальцийчувствительной эндонуклеазы CAD формируются фрагменты длиной 180 п.н. или кратные им. Именно эти фрагменты электрофоретически выявляются в виде «апоптозной лестницы», представленной столбцом 2. После базисной терапии наблюдалось снижение степени фрагментации ДНК, свидетельствующее о положительном эффекте лечения. Таким образом, включение мелаксена в базисную терапию приводило к значительно более выраженному уменьшению активностей каспазы-1, каспазы-3 и степени фрагментации ДНК, что может быть свидетельством антиапоптотического действия данного препарата.
Обсуждение
Результаты проведенного исследования показали, что наряду с цитолитическим синдромом, нарушениями липидного и углеводного обмена у пациентов с НАСГ определялась фрагментация ДНК лейкоцитов, а также выявлялось повышение активности каспаз, что свидетельствует о существенной роли апоптотических процессов при данной патологии. Считают, что фрагменты ДНК возникают под действием ДНК-фрагментирующих факторов и активированных каспазозависимых эндонуклеаз в терминальной фазе апоптоза [7]. Как известно, подобная фрагментация ДНК может быть связана с протеолитическим расщеплением под действием каспаз и ДНК-топоизомеразы II [14]. Считается, что каспаза-3 является одной из основных эффекторных каспаз апоптоза, которая экспрессируется практически во всех тканях. Это обусловлено воспалительными инфильтратами, в которых значительно повышен уровень активности интерлейкина-18, что приводит к программируемой клеточной гибели. Известно, что каспаза-1 является индуктором интерлейкина-18, и это также способствует развитию одного из путей апоптоза. Причем возрастание уровня интерлейкина-18 сопряжено с повышением активности как каспазы-1, так и каспазы-3 [15].
При базисной терапии, включающей прием гипогликемических препаратов, статинов и гепатопротекторов, наблюдалась нормализация параметров углеводного и липидного обмена, а также активности исследуемых каспаз и степени фрагментации ДНК. Очевидно, что улучшение гликемического профиля, уменьшение липидов крови и выраженности воспалительного процесса в гепатоцитах приводило к снижению выраженности апоптотических процессов.
Однако мелатонин способствовал более выраженному снижению уровня фрагментации ДНК и активности каспаз, благодаря торможению скорости свободнорадикальных процессов и защите молекулы ДНК от действия АФК, о чем свидетельствовали данные, полученные нами как при экспериментальном СД, индуцированным введением протаминасульфата, так и в клиническом исследовании [16—18]. Мелатонин, выступая в качестве скевенджера АФК, в том числе гидроксильного радикала, оказывающего наибольшее повреждающее действие на ДНК [12], способствовал снижению степени активности процессов апоптоза как в гепатоцитах, так и в β-клетках поджелудочной железы. Помимо этого, известно, что мелатонин положительно действует на углеводный и липидный обмен. Так, он может регулировать экспрессию генов белков GLUT-4, увеличивать пролиферацию и неогенез β-клеток, улучшать чувствительность к инсулину [19], а также ингибировать действие оксида азота, занимающего ведущее место в патогенезе атеросклероза [20]. Очевидно, что мелатонин может достаточно быстро проявлять и реализовать свое действие за счет проникновения во все клеточные структуры, включая ядро клетки. Таким образом, имеющиеся данные позволяют сделать вывод, что торможение процессов свободнорадикального окисления и апоптоза при приеме мелаксена сопряжено со снижением степени воспалительного процесса в печени и улучшением липидного и углеводного обмена у больных с НАСГ, развивающимся на фоне СД2.
Заключение
При НАСГ, возникающем на фоне СД2, наблюдаются цитолитический синдром, нарушения углеводного и липидного обмена, активизация апоптотических процессов, подтверждаемая уровнем активности каспазы-1 и каспазы-3, а также степенью фрагментации ДНК. При базисной терапии, включающей прием пероральных гипогликемических препаратов, статинов, витаминов и гепатопротекторов, наблюдалась тенденция к нормализации данных параметров. После назначения мелатонина, входящего в состав препарата мелаксен, происходило более существенное уменьшение фрагментации ДНК и более значимое изменение активности исследуемых каспаз, что было сопряжено с изменением параметров, отражающих степень выраженности цитолитического синдрома, липидного и углеводного обмена в сторону контрольных значений. Таким образом, полученные результаты свидетельствуют об антиоксидантных и антиапоптотических свойствах мелатонина, которые в первую очередь связаны с его способностью обезвреживать АФК и защищать молекулу ДНК от их негативного действия.
Дополнительная информация
Источники финансирования. Работа поддержана стипендией Президента Р.Ф. молодым ученым № СП-1606.2015.4.
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов и финансовой заинтересованности, связанной с проведенным исследованием и публикацией настоящей статьи.