The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Mazo V.K.

Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia

Sidorova Yu.S.

Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia

Shipelin V.A.

Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia

Petrov N.A.

Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia

Kochetkova A.A.

Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia

Polyphenolic plant extracts: effects on disorders of carbohydrate and lipid metabolism in laboratory animals

Authors:

Mazo V.K., Sidorova Yu.S., Shipelin V.A., Petrov N.A., Kochetkova A.A.

More about the authors

Journal: Problems of Endocrinology. 2016;62(4): 38‑44

Read: 2053 times


To cite this article:

Mazo VK, Sidorova YuS, Shipelin VA, Petrov NA, Kochetkova AA. Polyphenolic plant extracts: effects on disorders of carbohydrate and lipid metabolism in laboratory animals. Problems of Endocrinology. 2016;62(4):38‑44. (In Russ.)
https://doi.org/10.14341/probl201662438-44

Recommended articles:
Surgical treatment of intramedullary spinal cord tumors: a systematic review. Burdenko's Journal of Neurosurgery. 2025;(1):103-108
Epidemiology of M. geni­talium infe­ction. What is known?. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(2):143-152
Infe­rior alveolar nerve injury and sensory reha­bilitation of the lower lip. Plastic Surgery and Aesthetic Medi­cine. 2025;(3):91-99
The exoskeleton of the hand in modern habi­litation and reha­bilitation (analytical review). Russian Journal of Operative Surgery and Clinical Anatomy. 2025;(3):53-61

References:

  1. Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev. 2014;72(7):429-452.  doi: 10.1111/nure.12114
  2. Tarahovsky YS, Muzafarov EN, Kim YA. Rafts making and rafts braking: how plant flavonoids may control membrane heterogeneity. Mol Cell Biochem. 2008;314(1-2):65-71.  doi: 10.1007/s11010-008-9766-9
  3. Han MK. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic beta-cell damage. Exp Mol Med. 2003;35(2):136-139.  doi: 10.1038/emm.2003.19
  4. Zhang Z, Ding Y, Dai X, et al. Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur J Pharmacol. 2011;670(1):311-316.  doi: 10.1016/j.ejphar.2011.08.033
  5. Hsu CH, Liao YL, Lin SC, et sl. Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebo-controlled clinical trial. Altern Med Rev. 2011;16(2):157-163.
  6. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22(1):1-7.  doi: 10.1016/j.jnutbio.2010.06.006
  7. Zheng XX, Xu YL, Li SH, et al. Effects of green tea catechins with or without caffeine on glycemic control in adults: a metaanalysis of randomized controlled trials. Am J Clin Nutr. 2013;97(4):750-762.  doi: 10.3945/ajcn.111.032573
  8. Liu CY, Huang CJ, Huang LH, et al. Effects of green tea extract on insulin resistance and lucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One. 2014;9(3):E91163. doi: 10.1371/journal.pone.0091163
  9. Wolfram S, Raederstorff D, Preller M, et al. Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr. 2006;136(10):2512-2518.
  10. Song EK, Hur H, Han MK. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res. 2003;26(7):559-563.  doi: 10.1007/Bf02976881
  11. Tsuneki H, Ishizuka M, Terasawa M, et al. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans BMC. Pharmacol. 2004;4(1):18.  doi: 10.1186/1471-2210-4-18
  12. Wu L-Y, Juan C-C, Hwang LS, et al. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur J Nutr. 2004;43(2):116-124.  doi: 10.1007/S00394-004-0450-x
  13. Baluchnejadmojarad T, Roghani M. Chronic oral epigallocatechin-gallate alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: involvement of oxidative stress. Iran J Pharm Res. 2012;11(4):1243-1253. PMC3813147
  14. Roghani M, Baluchnejadmojarad T. Hypoglycemic and hypolipidemic effect and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats. Pathophysiology. 2010;17(1):55-59.  doi: 10.1016/j.pathophys.2009.07.004
  15. Potenza MA, Marasciulo FL, Tarquinio M, et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab. 2007;292(5):E1378-E1387. doi: 10.1152/ajpendo.00698.2006
  16. Yoon SP, Maeng YH, Hong R, et al. Protective effects of epigallocatechin gallate (EGCG) on streptozotocin-induced diabetic nephropathy in mice. Acta Histochem. 2014;116(8):1210-1215. doi: 10.1016/j.acthis.2014.07.003
  17. Isbrucker RA, Edwards JA, Wolz E, et al. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies. Food Chem Toxicol. 2006;44(5):636-650.  doi: 10.1016/j.fct.2005.11.003
  18. Isbrucker RA, Edwards JA, Wolz E, et al. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: teratogenicity and reproductive toxicity studies in rats. Food Chem Toxicol. 2006;44(5):651-661.  doi: 10.1016/j.fct.2005.11.002
  19. Martineau LC, Couture A, Spoor D, et al. Anti-diabetic properties of the Canadian lowbush blueberry vaccinium angustifolium Ait. Phytomedicine. 2006;13(9-10):612-623.  doi: 10.1016/j.phymed.2006.08.005
  20. Grace MH, Ribnicky DM, Kuhn P, et al. Hypoglycemic activity of a novel anthocyanin-rich formulation from lowbush blueberry, vaccinium angustifolium aiton. Phytomedicine. 2009;16(5):406-415.  doi: 10.1016/j.phymed.2009.02.018
  21. Ehlenfeldt MK, Prior RL. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem. 2001;49(5):2222-2227. doi: 10.1021/jf0013656
  22. Cravotto G, Boffa L, Genzini L, Garella D. Phytotherapeutics: an evaluation of the potential of 1000 plants. J Clin Pharm Ther. 2010;35(1):11-48.  doi: 10.1111/j.1365-2710.2009.01096.x
  23. Upton R, Editor. Bilberry fruit vaccinium myrtillus L. Standards Of Analysis, Quality Control, And Therapeutics. Santa Cruz, Ca: American Herbal Pharmacopoeia And Therapeutic Compendium. 2001.
  24. Burdulis D, Sarkinas A, Jasutiene I, et al. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) Fruits. Acta Pol Pharm. 2009;66(4):399-408.
  25. Seeram NP. Berry Fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem. 2008;56(3):627-629.  doi: 10.1021/jf071988k
  26. Wu X, Prior RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem. 2005;53(7):2589-2599. doi: 10.1021/jf048068b
  27. Sakakibara H, Ogawa T, Koyanagi A, et al. Distribution and excretion of bilberry anthocyanins [corrected] in mice. J Agric Food Chem. 2009;57(17):7681-7686. doi: 10.1021/jf901341b
  28. Watson EM. Some observations on the effect of blueberry leaf extract in diabetes mellitus. Can Med Assoc J. 1928;19(2):166-171.
  29. Valentová K, Ulrichová J, Cvak L, Šimánek V. Cytoprotective effect of a bilberry extract against oxidative damage of rat hepatocytes. Food Chem. 2007;101(3):912-917.  doi: 10.1016/j.foodchem.2006.02.038
  30. Lala G, Malik M, Zhao C, et al. Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutr Cancer. 2006;54(1):84-93.  doi: 10.1207/s15327914nc5401_10
  31. Kolosova NG, Shcheglova TV, Sergeeva SV, Loskutova LV. Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated oxys rats. Neurobiol Aging. 2006;27(9):1289-1297. doi: 10.1016/j.neurobiolaging.2005.07.022
  32. Song Y, Park HJ, Kang SN, et al. Blueberry peel extracts inhibit adipogenesis in 3T3-L1 cells and reduce high-fat diet-induced obesity. PLos One. 2013;8(7):E69925. doi: 10.1371/journal.pone.0069925
  33. Brader L, Overgaard A, Christensen LP, et al. Polyphenol-rich bilberry ameliorates total cholesterol and LDL-cholesterol when implemented in the diet of zucker diabetic fatty rats. Rev Diabet Stud. 2013;10(4):270-282.  doi: 10.1900/rds.2013.10.270
  34. Takikawa M, Inoue S, Horio F, Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-cctivated protein kinase in diabetic mice. J Nutr. 2010;140(3):527-533.  doi: 10.3945/jn.109.118216
  35. Hardie DG. Role of AMP-ativated protein kinase in the metabolic syndrome and in heart disease. Febs Lett. 2008;582(1):81-89.  doi: 10.1016/j.febslet.2007.11.018
  36. Mykkanen OT, Kalesnykas G, Adriaens M, et al. Bilberries potentially alleviate stress-related retinal gene expression induced by a high-fat diet in mice. Mol Vis. 2012;18:2338-2351. PMC3444297
  37. Roopchand DE, Grace MH, Kuhn P, et al. Efficient sorption of polyphenols to soybean flour enables natural fortification of foods. Food Chem. 2012;131(4):1193-1200. doi: 10.1016/j.foodchem.2011.09.103
  38. Roopchand DE, Kuhn P, Poulev A, et al. Biochemical analysis and in vivo hypoglycemic activity of a grape polyphenol-soybean flour complex. J Agric Food Chem. 2012;60(36):8860-8865. doi: 10.1021/jf300232h
  39. Roopchand DE, Kuhn P, Rojo LE, et al. Blueberry polyphenol-enriched soybean flour reduces hyperglycemia, body weight gain and serum cholesterol in mice. Pharmacol Res. 2013;68(1):59-67.  doi: 10.1016/j.phrs.2012.11.008
  40. Jeong HR, Jo YN, Jeong JH, et al. Blueberry (Vaccinium virgatum) leaf extracts protect against abeta-induced cytotoxicity and cognitive impairment. J Med Food. 2013;16(11):968-976.  doi: 10.1089/jmf.2013.2881
  41. Lee IC, Kim DY, Choi BY. Antioxidative activity of blueberry leaf extract prevents high-fat diet-induced obesity in C57BL/6 mice. J Cancer Prev. 2014;19(3):209-215.  doi: 10.15430/jcp.2014.19.3.209
  42. Nagao K, Higa K, Shirouchi B, et al. Effect of Vaccinium ashei reade leaves on lipid metabolism in Otsuka long-evans Tokushima fatty rats. Biosci Biotechnol Biochem. 2008;72(6):1619-1622. doi: 10.1271/bbb.80036
  43. Inoue N, Nagao K, Nomura S, et al. Effect of Vaccinium ashei reade leaf extracts on lipid metabolism in obese OLETF rats. Biosci Biotechnol Biochem. 2011;75(12):2304-2308. doi: 10.1271/bbb.110451
  44. Yuji K, Sakaida H, Kai T, et al. Effect of dietary blueberry (vaccinium ashei reade) leaves on serum and hepatic lipid levels in rats. Journal of Oleo Science. 2013;62(2):89-96.  doi: 10.5650/jos.62.89
  45. Beninger CW, Hosfield GL. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids fromphaseolus vulgaris. Seed coat color genotypes. J Agric Food Chem. 2003;51(27):7879-7883. doi: 10.1021/jf0304324
  46. Aparicio-Fernández X, Manzo-Bonilla L, Loarca-Piña GF. Comparison of antimutagenic activity of phenolic compounds in newly harvested and stored common beans phaseolus vulgaris against aflatoxin B1. J Food Sci. 2005;70(1):S73-S78.  doi: 10.1111/j.1365-2621.2005.tb09068.x
  47. Zhao J, Fan Z, Zhou W. Research progress on health functions of red adzuki bean. Journal of Agricultural Science and Technology. 2009;11(3):46-50.
  48. Xavier-Filho J, Oliveira AEA, Silva LBD, et al. Plant insulin or glucokinin: a conflicting issue. Brazilian Journal of Plant Physiology. 2003;15(2). doi: 10.1590/s1677-04202003000200002
  49. Ranilla LG, Kwon Y-I, Genovese MI, et al. Effect of thermal treatment on phenolic compounds and functionality linked to type 2 diabetes and hypertension management of peruvian and Brazilian bean cultivars (Phaseolus vulgaris L.). Usingin Vitromethods. J Food Biochem. 2010;34(2):329-355.  doi: 10.1111/j.1745-4514.2009.00281.x
  50. Ranilla LG, Genovese MI, Lajolo FM. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and peruvian bean cultivars (Phaseolus vulgaris L.). J Agric Food Chem. 2007;55(1):90-98.  doi: 10.1021/jf062785j
  51. Saks V, Cao D, Li H, et al. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLos One. 2011;6(6):E21071. doi: 10.1371/journal.pone.0021071
  52. Beninger CW, Hosfield GL, Nair MG. Flavonol glycosides from the seed coat of a new manteca-type dry bean (Phaseolus vulgaris L.). J Agric Food Chem. 1998;46(8):2906-2910. doi: 10.1021/jf9801522
  53. Aparicio-Fernandez X, Yousef GG, Loarca-Pina G, et al. Characterization of polyphenolics in the seed coat of black jamapa bean (Phaseolus Vulgaris L.). J Agric Food Chem. 2005;53(11):4615-4622. doi: 10.1021/jf047802o
  54. Jang Y-H, Kang M-J, Choe E-O, et al. Mung bean voat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Sci Biotech. 2013;23(1):247-252.  doi: 10.1007/s10068-014-0034-3
  55. Yao Y, Chen F, Wang M, et al. Antidiabetic activity of mung bean extracts in diabetic KK-aymice. J Agric Food Chem. 2008;56(19):8869-8873. doi: 10.1021/jf8009238
  56. Wang JY, Zhu C, Qian TW, et al. Extracts of black bean peel and pomegranate peel ameliorate oxidative stress induced hyperglycemia in mice. Exp Ther Med. 2014. doi: 10.3892/etm.2014.2040
  57. Saks V, Cao D, Li H, et al. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLos One. 2011;6(6):E21071. doi: 10.1371/journal.pone.0021071
  58. Mazo VK, Murashev AN, Sidorova YS, et al. Genetic rat models of type 2 diabetes for evaluation the effectiveness of minor biologically active food substances. Problems of Nutrition. 2014;83(6):25-31. (In Russ.).
  59. Mazo VK, Sidorova YuS, Kochetkova AA. Genetic mice models of type 2 diabetes for evaluation of the effectiveness of minor biologically active food substances. Problems of Nutrition. 2015;84(6):63-68] (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.