The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Smirnov A.A.

City Clinical Hospital Sixty-One, Moscow Healthcare Department, Moscow, Russia

Ovsepyan A.L.

St. Petersburg State Electrotechnical University named after V.I. Ulyanov (Lenin), St. Petersburg, Russia

Boyko A.A.

Leningrad Regional Oncology Dispensary, Saint Petersburg, Russia

Trunin E.M.

Sankt-Peterburgskaia meditsinskaia akademiia poslediplomnogo obrazovaniia Roszdrava

Tatarkin V.V.

North-West State Medical University named after I.I. Mechnikov, St. Petersburg, Russia

Van G.V.

St. Petersburg State Electrotechnical University named after V.I. Ulyanov (Lenin), St. Petersburg, Russia

Chernykh V.Ya.

St. Petersburg State Electrotechnical University named after V.I. Ulyanov (Lenin), St. Petersburg, Russia

Boiko N.V.

Rostov State Medical University, Ministry of Health of Russia, Rostov-on-Don, Russia

Shchemerov N.V.

North-West State Medical University named after I.I. Mechnikov, St. Petersburg, Russia

Diagnosis of malignant tumors of lower jaw using software package for analysis and segmentation of CT images with help of convolutional neural network

Authors:

Smirnov A.A., Ovsepyan A.L., Boyko A.A., Trunin E.M., Tatarkin V.V., Van G.V., Chernykh V.Ya., Boiko N.V., Shchemerov N.V.

More about the authors

Read: 3089 times


To cite this article:

Smirnov AA, Ovsepyan AL, Boyko AA, et al. . Diagnosis of malignant tumors of lower jaw using software package for analysis and segmentation of CT images with help of convolutional neural network. Russian Journal of Operative Surgery and Clinical Anatomy. 2020;4(1):32‑40. (In Russ.)
https://doi.org/10.17116/operhirurg2020401132

Recommended articles:
Immu­nology of the cervix in normal and pathological conditions (literature review). Russian Journal of Human Reproduction. 2024;(5):108-117
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Lung tube­rculosis and mali­gnant neoplasms: the current state of the problem. Russian Journal of Preventive Medi­cine. 2025;(3):122-127
Arti­ficial inte­lligence capa­bilities in multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5):14-21

References:

  1. Kaprin A.D., Starinsky V.V., Petrova G.V. The status of cancer care for the population of Russia in 2016. Moscow: Moscow Cancer Research Institute (MNIIO) named after P.A. Herzen — branch of FSBI «NRC Research Center of Radiology» of the Ministry of Health of Russia, 2017.
  2. Paches A.I. Tumors of the head and neck: a clinical guide. Moscow; 2013.
  3. Bagan J.V, Scully C. Recent advances in Oral Oncology 2007: epidemiology, aetiopathogenesis, diagnosis and prognostication. Oral Oncol. 2008;44(2):103-108.
  4. Vikulova Yu.V. Tomographic technologies in the diagnosis of malignant tumors of the oral cavity and oropharynx. Cand, Diss. N. Novgorod, 2013. 133 p.
  5. Zykova E.A. Oncological warning for diseases of the Mucous membrane of the oral cavity. Zdravookhranenie Yugry: opyt i innovatsii. 2016;3:49-55.
  6. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Navab N. Hornegger J, Wells W, Frangi A. (eds) Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol. 9351. Springer, Cham.
  7. Osipyan E.O., Mudunov A.M. (Computed tomography and magnetic resonance imaging in assessment of the local advancement of oral and oropharyngeal cancer as the key factor of treatment selection (literature review). Opukholi golovy i shei. 2017;7:53-62.
  8. Lebedev B.K., Lebedev O.B. Ways to increase stability of the problem of training artificial neural networks when conserving convergence. Informatika, vychislitel’naya tekhnika i inzhenernoe obrazovanie. 2019;2:50-56.
  9. Neiman O.I. Diagnosis of cancer of the oral mucosa and oropharynx. Onkologicheskii zhurnal. 2010;2(14):76-79.
  10. Evdokimov B.S., Bryukhanov A.V., Vikhlyanov I.V. Complex radiodiagnosis of oropharyngeal neoplasms. Vestnik rentgenologii i radiologii. 2012;2:24-28.
  11. Dubenko Yu.V., Dyshkant E.E. Neural network algorithm for choosing methods of time series forecasting. Vestnik of Astrakhan State Technical University. Series: Management, Computer Science and Informatics. 2019;1:51-60.
  12. Astafurov V.G., Skorokhodov A.V. Formation of a set of informative classification features for solving cloud classification problem using MODIS satellite data. Trudy SPIIRAN. 2017;2:118-139.
  13. Rozykhodzhaeva G.A., Rozykhodzhaeva D.A. Features of formation of training set and training of the neural network with incomplete queries by solving private medical tasks. Nauchnoe obozrenie. Biologicheskie nauki. 2017;5:28-32.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.