Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Патрушев М.В.

ФГБУ «Национальный исследовательский центр "Курчатовский институт"» — Курчатовский геномный центр

Прокопенко А.В.

ФГБУ «Национальный исследовательский центр "Курчатовский институт"» — Курчатовский геномный центр

Изотова А.О.

ФГБУ «Национальный исследовательский центр "Курчатовский институт"» — Курчатовский геномный центр

Агумава А.А.

ФГБУ «Национальный исследовательский центр "Курчатовский институт"» — Курчатовский комплекс медицинской приматологии

Петрова Д.С.

ФГБУ «Национальный исследовательский центр "Курчатовский институт"» — Курчатовский геномный центр

Матюшкин И.В.

ФГБУ «Национальный исследовательский центр "Курчатовский институт"» — Курчатовский комплекс медицинской приматологии

Чжу О.П.

ФГБУ «Национальный исследовательский центр "Курчатовский институт"» — Курчатовский комплекс медицинской приматологии

Шарко Ф.С.

ФГБУ «Национальный исследовательский центр "Курчатовский институт"» — Курчатовский геномный центр

Тощаков С.В.

ФГБУ «Национальный исследовательский центр "Курчатовский институт"»

Интеграция генетической информации в цифровые экосистемы современных биобанков приматов: проблемы и перспективы

Авторы:

Патрушев М.В., Прокопенко А.В., Изотова А.О., Агумава А.А., Петрова Д.С., Матюшкин И.В., Чжу О.П., Шарко Ф.С., Тощаков С.В.

Подробнее об авторах

Прочитано: 81 раз


Как цитировать:

Патрушев М.В., Прокопенко А.В., Изотова А.О., и др. Интеграция генетической информации в цифровые экосистемы современных биобанков приматов: проблемы и перспективы. Молекулярная генетика, микробиология и вирусология. 2025;43(4‑2):42‑54.
Patrushev MV, Prokopenko AV, Izotova AO, et al. Integration of genetic information into the digital ecosystems of modern primate biobanks: opportunities and challenges. Molecular Genetics, Microbiology and Virology. 2025;43(4‑2):42‑54. (In Russ.)
https://doi.org/10.17116/molgen20254304242

Рекомендуем статьи по данной теме:
Циф­ро­ви­за­ция в ме­ди­ци­не и здра­во­ох­ра­не­нии Рос­сии. Вос­ста­но­ви­тель­ные би­отех­но­ло­гии, про­фи­лак­ти­чес­кая, циф­ро­вая и пре­дик­тив­ная ме­ди­ци­на. 2025;(2):5-9
Под­хо­ды к оциф­ров­ке кли­ни­чес­ких ре­ко­мен­да­ций. Ме­ди­цин­ские тех­но­ло­гии. Оцен­ка и вы­бор. 2025;(2):39-47

Литература / References:

  1. Bukreeva AS, Malsagova KA, Petrovskiy DV, Butkova TV, Nakhod VI, Rudnev VR, et al. Biobank Digitalization: From Data Acquisition to Efficient Use. Biology (Basel). 2024;13(12):957.  https://doi.org/10.3390/biology13120957
  2. Harding JD. Genomic Tools for the Use of Nonhuman Primates in Translational Research. ILAR J. 2017;58(1):59-68.  https://doi.org/10.1093/ilar/ilw042
  3. Messaoudi I, Estep R, Robinson B, Wong SW. Nonhuman primate models of human immunology. Antioxid Redox Signal. 2011;14(2):261-273.  https://doi.org/10.1089/ars.2010.3241
  4. Rogers J, Gibbs RA. Comparative primate genomics: emerging patterns of genome content and dynamics. Nat Rev Genet. 2014;15(5):347-359.  https://doi.org/10.1038/nrg3707
  5. Vallender EJ, Miller GM. Nonhuman primate models in the genomic era: a paradigm shift. ILAR J. 2013;54(2):154-165.  https://doi.org/10.1093/ilar/ilt044
  6. Alkhatib R, Gaede KI. Data Management in Biobanking: Strategies, Challenges, and Future Directions. BioTech (Basel). 2024;13(3):34.  https://doi.org/10.3390/biotech13030034
  7. Vallender EJ, Hotchkiss CE, Lewis AD, Rogers J, Stern JA, Peterson SM, et al. Nonhuman primate genetic models for the study of rare diseases. Orphanet J Rare Dis. 2023;18(1):20.  https://doi.org/10.1186/s13023-023-02619-3
  8. Müller H, Malservet N, Quinlan P, Reihs R, Penicaud M, Chami A, et al. From the evaluation of existing solutions to an all-inclusive package for biobanks. Health Technol (Berl). 2017;7(1):89-95.  https://doi.org/10.1007/s12553-016-0175-x
  9. Reynolds T, Johnson EC, Huggett SB, Bubier JA, Palmer RHC, Agrawal A, et al. Interpretation of psychiatric genome-wide association studies with multispecies heterogeneous functional genomic data integration. Neuropsychopharmacology. 2021;46(1):86-97.  https://doi.org/10.1038/s41386-020-00795-5
  10. Medina-Martínez JS, Arango-Ossa JE, Levine MF, Zhou Y, Gundem G, Kung AL, et al. Isabl Platform, a digital biobank for processing multimodal patient data. BMC Bioinformatics. 2020;21(1):549.  https://doi.org/10.1186/s12859-020-03879-7
  11. Calvino G, Peconi C, Strafella C, Trastulli G, Megalizzi D, Andreucci S, et al. Federated Learning: Breaking Down Barriers in Global Genomic Research. Genes (Basel). 2024;15(12):1650. https://doi.org/10.3390/genes15121650
  12. Procyk E, Meunier M. BioSimia, France CNRS network for nonhuman primate biomedical research in infectiology, immunology, and neuroscience. Curr Res Neurobiol. 2022;3:100051. https://doi.org/10.1016/j.crneur.2022.100051
  13. Capitanio JP. Knowledge of Biobehavioral Organization Can Facilitate Better Science: A Review of the BioBehavioral Assessment Program at the California National Primate Research Center. Animals (Basel). 2021;11(8):2445. https://doi.org/10.3390/ani11082445
  14. Wu DD, Qi XG, Yu L, Li M, Liu ZJ, Yoder AD, et al. Initiation of the Primate Genome Project. Zool Res. 2022;43(2):147-149.  https://doi.org/10.24272/j.issn.2095-8137.2022.001
  15. Corrales C, Luciano S, Astrin J. Biodiversity biobanks: a landscape analysi. Published online 2023. https://doi.org/10.3897/arphapreprints.e103105
  16. Coorens THH, Guillaumet-Adkins A, Kovner R, Linn RL, Roberts VHJ, Sule A, et al. The human and non-human primate developmental GTEx projects. Nature. 2025;637(8046):557-564.  https://doi.org/10.1038/s41586-024-08244-9
  17. Shen Y, Shao M, Hao ZZ, Huang M, Xu N, Liu S. Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neurosci Bull. 2024;40(4):517-532.  https://doi.org/10.1007/s12264-023-01160-4
  18. Liu X, Gao T, Lu T, Bao Y, Schumann G, Lu L. China Brain Project: from bench to bedside. Sci Bull (Beijing). 2023;68(5):444-447.  https://doi.org/10.1016/j.scib.2023.02.023
  19. Bimber BN, Raboin MJ, Letaw J, Nevonen KA, Spindel JE, McCouch SR, et al. Whole-genome characterization in pedigreed non-human primates using genotyping-by-sequencing (GBS) and imputation. BMC Genomics. 2016;17(1):676.  https://doi.org/10.1186/s12864-016-2966-x
  20. Mao Y, Harvey WT, Porubsky D, Munson KM, Hoekzema K, Lewis AP, et al. Structurally divergent and recurrently mutated regions of primate genomes. Cell. 2024;187(6):1547-1562.e13.  https://doi.org/10.1016/j.cell.2024.01.052
  21. Backman JD, Li AH, Marcketta A, Sun D, Mbatchou J, Kessler MD, et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 2021;599(7886):628-634.  https://doi.org/10.1038/s41586-021-04103-z
  22. von Thaden A, Cocchiararo B, Jarausch A, Jüngling H, Karamanlidis AA, Tiesmeyer A, et al. Assessing SNP genotyping of noninvasively collected wildlife samples using microfluidic arrays. Sci Rep. 2017;7(1):10768. https://doi.org/10.1038/s41598-017-10647-w
  23. Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H, et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet. 2012;44(6):631-635.  https://doi.org/10.1038/ng.2283
  24. Rubinacci S, Hofmeister RJ, Sousa da Mota B, Delaneau O. Imputation of low-coverage sequencing data from 150,119 UK Biobank genomes. Nat Genet. 2023;55(7):1088-1090. https://doi.org/10.1038/s41588-023-01438-3
  25. Jasinska AJ. Resources for functional genomic studies of health and development in nonhuman primates. Am J Phys Anthropol. 2020;171 Suppl 70:174-194.  https://doi.org/10.1002/ajpa.24051
  26. Blutt SE, Coarfa C, Neu J, Pammi M. Multiomic Investigations into Lung Health and Disease. Microorganisms. 2023;11(8):2116. https://doi.org/10.3390/microorganisms11082116
  27. Tung J, Zhou X, Alberts SC, Stephens M, Gilad Y. The genetic architecture of gene expression levels in wild baboons. Elife. 2015;4:e04729. https://doi.org/10.7554/eLife.04729
  28. Wang A, Chiou J, Poirion OB, Buchanan J, Valdez MJ, Verheyden JM, et al. Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. Elife. 2020;9:e62522. https://doi.org/10.7554/eLife.62522
  29. Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14(6):e8124. https://doi.org/10.15252/msb.20178124
  30. Zhuang XL, Zhang JJ, Shao Y, Ye Y, Chen CY, Zhou L, et al. Integrative Omics Reveals Rapidly Evolving Regulatory Sequences Driving Primate Brain Evolution. Mol Biol Evol. 2023;40(8):msad173. https://doi.org/10.1093/molbev/msad173
  31. Juan D, Santpere G, Kelley JL, Cornejo OE, Marques-Bonet T. Current advances in primate genomics: novel approaches for understanding evolution and disease. Nat Rev Genet. 2023;24(5):314-331.  https://doi.org/10.1038/s41576-022-00554-w
  32. Housman G, Gilad Y. Prime time for primate functional genomics. Curr Opin Genet Dev. 2020;62:1-7.  https://doi.org/10.1016/j.gde.2020.04.007
  33. L Rocha J, Lou RN, Sudmant PH. Structural variation in humans and our primate kin in the era of telomere-to-telomere genomes and pangenomics. Curr Opin Genet Dev. 2024;87:102233. https://doi.org/10.1016/j.gde.2024.102233
  34. Borisov N, Buzdin A. Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect. Biomedicines. 2022;10(9):2318. https://doi.org/10.3390/biomedicines10092318
  35. Foltz SM, Greene CS, Taroni JN. Cross-platform normalization enables machine learning model training on microarray and RNA-seq data simultaneously. Commun Biol. 2023;6(1):222.  https://doi.org/10.1038/s42003-023-04588-6
  36. Chorlton SD. Ten common issues with reference sequence databases and how to mitigate them. Front Bioinform. 2024;4:1278228. https://doi.org/10.3389/fbinf.2024.1278228
  37. Ambalavanan R, Snead RS, Marczika J, Towett G, Malioukis A, Mbogori-Kairichi M. Challenges and strategies in building a foundational digital health data integration ecosystem: a systematic review and thematic synthesis. Front Health Serv. 2025;5:1600689. https://doi.org/10.3389/frhs.2025.1600689
  38. Gangwal A, Lavecchia A. Artificial intelligence in preclinical research: enhancing digital twins and organ-on-chip to reduce animal testing. Drug Discov Today. 2025;30(5):104360. https://doi.org/10.1016/j.drudis.2025.104360
  39. Bartolomucci A, Kane AE, Gaydosh L, Razzoli M, McCoy BM, Ehninger D, et al. Animal Models Relevant for Geroscience: Current Trends and Future Perspectives in Biomarkers, and Measures of Biological Aging. J Gerontol A Biol Sci Med Sci. 2024;79(9):glae135. https://doi.org/10.1093/gerona/glae135
  40. Montesinos-López OA, Montesinos-López A, Mosqueda-González BA, Delgado-Enciso I, Chavira-Flores M, Crossa J, et al. Genomic prediction powered by multi-omics data. Front Genet. 2025;16:1636438. https://doi.org/10.3389/fgene.2025.1636438
  41. Wu J, Koelzer VH. Towards generative digital twins in biomedical research. Comput Struct Biotechnol J. 2024;23:3481-3488. https://doi.org/10.1016/j.csbj.2024.09.030
  42. Loewa A, Feng JJ, Hedtrich S. Human disease models in drug development. Nat Rev Bioeng. Published online May 11, 2023:1-15.  https://doi.org/10.1038/s44222-023-00063-3
  43. Nakamura T, Fujiwara K, Saitou M, Tsukiyama T. Non-human primates as a model for human development. Stem Cell Reports. 2021;16(5):1093-1103. https://doi.org/10.1016/j.stemcr.2021.03.021
  44. Marzi SJ, Schilder BM, Nott A, Frigerio CS, Willaime-Morawek S, Bucholc M, et al. Artificial intelligence for neurodegenerative experimental models. Alzheimers Dement. 2023;19(12):5970-5987. https://doi.org/10.1002/alz.13479
  45. Chafai N, Bonizzi L, Botti S, Badaoui B. Emerging applications of machine learning in genomic medicine and healthcare. Crit Rev Clin Lab Sci. 2024;61(2):140-163.  https://doi.org/10.1080/10408363.2023.2259466
  46. Cheng J, Lawrence C, Niepert M. VEGN: Variant Effect Prediction with Graph Neural Networks. Published online June 25, 2021. https://doi.org/10.48550/arXiv.2106.13642
  47. Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, et al. The landscape of tolerated genetic variation in humans and primates. Science. 2023;380(6648):eabn8153. https://doi.org/10.1126/science.abn8197
  48. Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet. 2023;24(10):687-711.  https://doi.org/10.1038/s41576-022-00568-4
  49. Yu H, He G, Wang W, Qin S, Wang Y, Bai M, et al. A graph neural network approach for accurate prediction of pathogenicity in multi-type variants. Brief Bioinform. 2025;26(2):bbaf151. https://doi.org/10.1093/bib/bbaf151

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.