Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Филиппенков И.Б.

ФБГУ «Национальный исследовательский центр «Курчатовский институт»

Мозговой И.В.

ФБГУ «Национальный исследовательский центр «Курчатовский институт»

Дергунова Л.В.

ФБГУ «Национальный исследовательский центр «Курчатовский институт»

Возможности взаимодействий циклических РНК с нуклеиновыми кислотами и белками

Авторы:

Филиппенков И.Б., Мозговой И.В., Дергунова Л.В.

Подробнее об авторах

Прочитано: 99 раз


Как цитировать:

Филиппенков И.Б., Мозговой И.В., Дергунова Л.В. Возможности взаимодействий циклических РНК с нуклеиновыми кислотами и белками. Молекулярная генетика, микробиология и вирусология. 2025;43(4‑2):28‑32.
Filippenkov IB, Mozgovoy IV, Dergunova LV. Possibilities of interactions of circular RNAS with nucleic acids and proteins. Molecular Genetics, Microbiology and Virology. 2025;43(4‑2):28‑32. (In Russ.)
https://doi.org/10.17116/molgen20254304228

Рекомендуем статьи по данной теме:
Уве­ли­че­ние экспрес­сии цик­ли­чес­ких РНК circSPARC и circTMEM181 при ко­ро­нар­ном ате­рос­кле­ро­зе. Мо­ле­ку­ляр­ная ге­не­ти­ка, мик­ро­би­оло­гия и ви­ру­со­ло­гия. 2025;(1):24-29

Литература / References:

  1. Schwanhüusser B, Busse D, Li N, Dittmar G, Schuchhardt, Wolf J, Chen W, Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337-342.  https://doi.org/10.1038/nature10098
  2. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44:1370-1383. https://doi.org/10.1093/nar/gkv1367
  3. Filippenkov IB, Sudarkina OY, Limborska SA, Dergunova LV. Circular RNA of the human sphingomyelin synthase 1 gene: Multiple splice variants, evolutionary conservatism and expression in different tissues. RNA Biol. 2015;12:1030-1042. https://doi.org/10.1080/15476286.2015.1076611
  4. Filippenkov IB, Sudarkina OY, Limborska SA, Dergunova LV. Multi-step splicing of sphingomyelin synthase linear and circular RNAs. Gene. 2018; 654:14-22.  https://doi.org/10.1016/j.gene.2018.02.030
  5. Filippenkov IB, Stavchansky VV, Denisova AE, Valieva LV, Remizova JA, Mozgovoy IV et al. Genome-Wide RNA-Sequencing Reveals Massive Circular RNA Expression Changes of the Neurotransmission Genes in the Rat Brain after Ischemia-Reperfusion. Genes (Basel). 2021;12:1-19.  https://doi.org/10.3390/genes12121870
  6. Мозговой И.В., Шпетко Я.Ю., Денисова А.Е., Ставчанский В.В., Виноградина М.А., Губский Л.В., и др. Дифференциальная экспрессия циклических РНК во фронтальной коре мозга крыс в условиях ишемии-реперфузии. Биохимия. 2025;90(5):611-626.  https://doi.org/10.1134/S0006297925600280
  7. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019;20:675-691.  https://doi.org/10.1038/s41576-019-0158-7
  8. Kleaveland B, Shi CY, Stefano J, Bartel DP. A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Cell. 2018;174:350-362.e17.  https://doi.org/10.1016/j.cell.2018.05.022
  9. Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92-105.  https://doi.org/10.1101/gr.082701.108
  10. Su X, Feng Y, Chen R, Duan S. CircR-loop: a novel RNA:DNA interaction on genome instability. Cell. Mol. Biol. Lett. 2024;29:38877420. https://doi.org/10.1186/s11658-024-00606-5
  11. Li X, Zhang JL, Lei YN, Liu XQ, Xue W, Zhang Y, et al. Linking circular intronic RNA degradation and function in transcription by RNase H1. Sci. China Life Sci. 2021;64:1795-1809. https://doi.org/10.1007/s11427-021-1993-6
  12. Liu CX, Li X, Nan F, Jiang S, Gao X, Guo SK, et al. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell. 2019;177:865-880.e21.  https://doi.org/10.1016/j.cell.2019.03.046
  13. Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 2020; 10:3506-3517. https://doi.org/10.7150/thno.42174
  14. Nikitin MP. Non-complementary strand commutation as a fundamental alternative for information processing by DNA and gene regulation. Nat. Chem. 2023;15:70-82.  https://doi.org/10.1038/s41557-022-01111-y
  15. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384-8.  https://doi.org/10.1038/nature11993
  16. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357:eaam8526. https://doi.org/10.1126/science.aam8526
  17. Dori M, Caroli J, Forcato M. Circr, a Computational Tool to Identify miRNA:circRNA Associations. Front. Bioinforma. 2022;2:36304313. https://doi.org/10.3389/fbinf.2022.852834
  18. Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;6:6001-13.  https://doi.org/10.18632/oncotarget.3469
  19. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 2016;7:27050392. https://doi.org/10.1038/ncomms11215
  20. Sygitowicz G, Sitkiewicz D. Involvement of circRNAs in the Development of Heart Failure. Int. J. Mol. Sci. 2022;23:36430607. https://doi.org/10.3390/ijms232214129
  21. Xu G, Liu G, Wang Z, Li Y, Fang W. Circular RNAs: Promising Treatment Targets and Biomarkers of Ischemic Stroke. Int. J. Mol. Sci. 2024; 25:38203348. https://doi.org/10.3390/ijms25010178
  22. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol. 2022;19:188-206.  https://doi.org/10.1038/s41571-021-00585-y
  23. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD. Target RNA-directed trimming and tailing of small silencing RNAs. Science. 2010;328:1534-1539. https://doi.org/10.1126/SCIENCE.1187058
  24. Wightman FF, Giono LE, Fededa JP, De La Mata M. Target RNAs Strike Back on MicroRNAs. Front. Genet. 2018;9:435.  https://doi.org/10.3389/FGENE.2018.00435
  25. Fuchs Wightman F, Lukin J, Giusti SA, Soutschek M, Bragado L, Pozzi B, et al. Influence of RNA circularity on Target RNA-Directed MicroRNA Degradation. Nucleic Acids Res. 2024;52:3358-3374. https://doi.org/10.1093/nar/gkae094
  26. Villarreal OD, Mersaoui SY, Yu Z, Masson JY, Richard S. Genome-wide R-loop analysis defines unique roles for DDX5, XRN2, and PRMT5 in DNA/RNA hybrid resolution. Life Sci. Alliance. 2020;3:32747416. https://doi.org/10.26508/LSA.202000762
  27. Cerritelli SM, Sakhuja K, Crouch RJ. RNase H1, the Gold Standard for R-Loop Detection. Methods Mol. Biol. 2022;2528:91-114.  https://doi.org/10.1007/978-1-0716-2477-7_7
  28. Olovnikov AM. Eco-crossover, or environmentally regulated crossing-over, and natural selection are two irreplaceable drivers of adaptive evolution: Eco-crossover hypothesis. Biosystems. 2022;218.  https://doi.org/10.1016/J.BIOSYSTEMS.2022.104706
  29. Nuthalapati SS, Ulshöfer CJ, Bindereif A. CircRNP complexes: from nature to design. J. Mol. Cell Biol. 2023;15:36722152. https://doi.org/10.1093/jmcb/mjad006
  30. Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, et al. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol. Cancer. 2020;19:32894144. https://doi.org/10.1186/s12943-020-01253-y
  31. Wang L, Long H, Zheng Q, Bo X, Xiao X, Li B. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol. Cancer. 2019;18:31324186. https://doi.org/10.1186/s12943-019-1046-7
  32. Liu X, Wang X, Li J, Hu S, Deng Y, Yin H, et al. Identification of mecciRNAs and their roles in the mitochondrial entry of proteins mitochondria, circRNA, mecciRNA, mitochondrial protein. Sci China Life Sci. 2020;63:1429-1449. https://doi.org/10.1007/s11427-020-1631-9
  33. Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19:30537986. https://doi.org/10.1186/s13059-018-1594-y
  34. Zheng S, Qian Z, Jiang F, Ge D, Tang J, Chen H, et al. CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels. Am. J. Transl. Res. 2019;11:4126-4138. ISSN:1943-8141/AJTR0093756.
  35. Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, et al. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol. Cell. 2017;67:214-227.e7.  https://doi.org/10.1016/J.MOLCEL.2017.05.023

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.