The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Ostroumova O.D.

Russian Medical Academy of Continuous Professional Education

Polyakova O.A.

Russian Medical Academy of Continuing Professional Education

Kochetkov A.I.

Russian Medical Academy of Continuous Professional Education

The use of acetylsalicylic acid for prevention of cardiovascular complications in patients undergoing COVID-19. A review of current recommendations

Authors:

Ostroumova O.D., Polyakova O.A., Kochetkov A.I.

More about the authors

Read: 2112 times


To cite this article:

Ostroumova OD, Polyakova OA, Kochetkov AI. The use of acetylsalicylic acid for prevention of cardiovascular complications in patients undergoing COVID-19. A review of current recommendations. Russian Journal of Cardiology and Cardiovascular Surgery. 2022;15(6):656‑664. (In Russ.)
https://doi.org/10.17116/kardio202215061656

Recommended articles:
«Cytokine storm» as an immu­nopathologic reaction in pregnant women in the first trimester. Russian Bulletin of Obstetrician-Gynecologist. 2024;(5):19-24
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146

References:

  1. World Health Organization. Weekly epidemiological update on COVID-19 — 2 November 2022. (06.11.2022). https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---2-november-2022
  2. Stopcoronavirus.RF. Operational data (as of November 6, 2022). (06.11.2022). https://xn--80aesfpebagmfblc0a.xn--p1ai/information/
  3. Vechorko VI, Averkov OV, Zimin AA. New SARS-CoV-2 Omicron variant — clinical picture, treatment, prevention (literature review). Cardiovascular Therapy and Prevention. 2022;21(6):89-98. (In Russ.). https://doi.org/10.15829/1728-8800-2022-3228
  4. Our World in Data. Share of SARS-CoV-2 sequences that are the omicron variant. (21.11.2022). https://ourworldindata.org/explorers/coronavirus-data-explorer?facet=none&Metric=Omicron+variant+%28share%29&Interval=7-day+rolling+average&Relative+to+Population=true&Color+by+test+positivity=false&country=~RUS
  5. Writing Committee Members, Bozkurt B, Das SR, et al. 2022 AHA/ACC Key Data Elements and Definitions for Cardiovascular and Noncardiovascular Complications of COVID-19: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards. J Am Coll Cardiol. 2022;80(4):388-465.  https://doi.org/10.1016/j.jacc.2022.03.355
  6. Abbasi J. The COVID Heart-One Year After SARS-CoV-2 Infection, Patients Have an Array of Increased Cardiovascular Risks. JAMA. 2022;327(12):1113-1114. https://doi.org/10.1001/jama.2022.2411
  7. Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. Clinical features of post-COVID-19 period. Results of the international register «Dynamic analysis of comorbidities in SARS-CoV-2 survivors (AKTIV SARS-CoV-2)». Data from 6-month follow-up. Russian Journal of Cardiology. 2021;26(10):4708. (In Russ.). https://doi.org/10.15829/1560-4071-2021-4708
  8. Ho FK, Man KKC, Toshner M, et al. Thromboembolic Risk in Hospitalized and Nonhospitalized COVID-19 Patients: A Self-Controlled Case Series Analysis of a Nationwide Cohort. Mayo Clin Proc. 2021;96(10):2587-2597. https://doi.org/10.1016/j.mayocp.2021.07.002
  9. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Temporary methodological recommendations approved by the Ministry of Health of the Russian Federation. Version 16 (18.08.2022). P. 248. (In Russ.). https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/193/original/%D0%92%D0%9C%D0%A0_COVID-19_V16.pdf
  10. An OI, Martyanov AA, Stepanyan MG, et al. Platelets in COVID-19: «innocent by-standers» or active participants? Pediatric Hematology/Oncology and Immunopathology. 2021;20(1):184-191. (In Russ.). https://doi.org/10.24287/1726-1708-2021-20-1-184-191
  11. Katsoularis I, Fonseca-Rodríguez O, Farrington P, et al. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 2021;398(10300):599-607.  https://doi.org/10.1016/S0140-6736(21)00896-5
  12. Burn E, Duarte-Salles T, Fernandez-Bertolin S, et al. Venous or arterial thrombosis and deaths among COVID-19 cases: a European network cohort study. Lancet Infect Dis. 2022;22(8):1142-1152. https://doi.org/10.1016/S1473-3099(22)00223-7
  13. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583-590.  https://doi.org/10.1038/s41591-022-01689-3
  14. Drapkina OM, Kontsevaya AV, Kalinina AM, et al. 2022 Prevention of chronic non-communicable diseases in the Russian Federation. National guidelines. Cardiovascular Therapy and Prevention. 2022;21(4):5-232. (In Russ.). https://doi.org/10.15829/1728-8800-2022-3235
  15. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421-1424. https://doi.org/10.1111/jth.14830
  16. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. https://doi.org/10.1056/NEJMoa2002032
  17. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):575-582.  https://doi.org/10.1016/S2352-3026(20)30216-7
  18. Iba T, Warkentin TE, Thachil J, Levi M, Levy JH. Proposal of the Definition for COVID-19-Associated Coagulopathy. J Clin Med. 2021;10(2):191.  https://doi.org/10.3390/jcm10020191
  19. Pretorius E, Vlok M, Venter C, et al. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol. 2021;20(1):172.  https://doi.org/10.1186/s12933-021-01359-7
  20. Pretorius E, Venter C, Laubscher GJ, et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022;21(1):148.  https://doi.org/10.1186/s12933-022-01579-5
  21. Grobbelaar LM, Venter C, Vlok M, et al. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep. 2021;41(8):BSR20210611. https://doi.org/10.1042/BSR20210611
  22. Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J. 2022;479(4):537-559.  https://doi.org/10.1042/BCJ20220016
  23. Bonaventura A, Vecchié A, Dagna L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319-329.  https://doi.org/10.1038/s41577-021-00536-9
  24. Conway EM, Mackman N, Warren RQ, et al. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol. 2022;22(10):639-649.  https://doi.org/10.1038/s41577-022-00762-9
  25. Jansen AJG, Spaan T, Low HZ, et al. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Adv. 2020;4(13):2967-2978. https://doi.org/10.1182/bloodadvances.2020001640
  26. Rondina MT, Brewster B, Grissom CK, et al. In vivo platelet activation in critically ill patients with primary 2009 influenza A(H1N1). Chest. 2012;141(6):1490-1495. https://doi.org/10.1378/chest.11-2860
  27. Schexneider KI, Reedy EA. Thrombocytopenia in dengue fever. Curr Hematol Rep. 2005;4(2):145-148. (08.11.2022). https://pubmed.ncbi.nlm.nih.gov/15720964/
  28. Zhang Y, Zeng X, Jiao Y, et al. Mechanisms involved in the development of thrombocytopenia in patients with COVID-19. Thromb Res. 2020;193:110-115.  https://doi.org/10.1016/j.thromres.2020.06.008
  29. Caillon A, Trimaille A, Favre J, Jesel L, Morel O, Kauffenstein G. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J Thromb Haemost. 2022;20(1):17-31.  https://doi.org/10.1111/jth.15566
  30. Althaus K, Marini I, Zlamal J, et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood. 2021;137(8):1061-1071. https://doi.org/10.1182/blood.2020008762
  31. Zaid Y, Puhm F, Allaeys I, et al. Platelets Can Associate with SARS-Cov-2 RNA and Are Hyperactivated in COVID-19. Circ Res. 2020;127(11):1404-1418. https://doi.org/10.1161/CIRCRESAHA.120.317703
  32. Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317-1329. https://doi.org/10.1182/blood.2020007214
  33. Barrett TJ, Cornwell M, Myndzar K, et al. Platelets amplify endotheliopathy in COVID-19. Sci Adv. 2021;7(37):eabh2434. https://doi.org/10.1126/sciadv.abh2434
  34. Léopold V, Pereverzeva L, Schuurman AR, et al. Platelets are Hyperactivated but Show Reduced Glycoprotein VI Reactivity in COVID-19 Patients. Thromb Haemost. 2021;121(9):1258-1262. https://doi.org/10.1055/a-1347-5555
  35. Yatim N, Boussier J, Chocron R, et al. Platelet activation in critically ill COVID-19 patients. Ann Intensive Care. 2021;11(1):113.  https://doi.org/10.1186/s13613-021-00899-1
  36. Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169-1179. https://doi.org/10.1182/blood.2020007008
  37. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020;136(11):1330-1341. https://doi.org/10.1182/blood.2020007252
  38. Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. https://doi.org/10.1172/jci.insight.138999
  39. Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12):e20201129. https://doi.org/10.1084/jem.20201129
  40. Zhao X, Zhou L, Kou Y, Kou J. Activated neutrophils in the initiation and progression of COVID-19: hyperinflammation and immunothrombosis in COVID-19. Am J Transl Res. 2022;1.4(3):1454-1468. (08.11.2022). https://pubmed.ncbi.nlm.nih.gov/35422922/
  41. Barrett TJ, Bilaloglu S, Cornwell M, et al. Platelets contribute to disease severity in COVID-19. J Thromb Haemost. 2021;19(12):3139-3153. https://doi.org/10.1111/jth.15534
  42. Koupenova M, Corkrey HA, Vitseva O, et al. SARS-CoV-2 Initiates Programmed Cell Death in Platelets. Circ Res. 2021;129(6):631-646.  https://doi.org/10.1161/CIRCRESAHA.121.319117
  43. Campbell RA, Schwertz H, Hottz ED, et al. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood. 2019;133(19):2013-2026. https://doi.org/10.1182/blood-2018-09-873984
  44. Ma S, Su W, Sun C, et al. Does aspirin have an effect on risk of death in patients with COVID-19? A meta-analysis. Eur J Clin Pharmacol. 2022;78(9):1403-1420. https://doi.org/10.1007/s00228-022-03356-5
  45. RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022;399(10320):143-151.  https://doi.org/10.1016/S0140-6736(21)01825-0
  46. Lomakin NV. Resolution of the council of experts on scientific experience exchange of antiplatelet drugs use, including acetylsalicylic acid for prevention of COVID-19 arterial vascular complications in different time periods of the disease. Therapy. 2021;7(9(51)):113-124. (In Russ.). https://doi.org/10.18565/therapy.2021.9.113-124
  47. Shlyakho EV, Konradi AO, Arutyunov GP, et al. Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic. Russian Journal of Cardiology. 2020;25(3):3801. (In Russ.). https://doi.org/10.15829/1560-4071-2020-3-3801
  48. Task Force for the management of COVID-19 of the European Society of Cardiology. ESC guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 2-care pathways, treatment, and follow-up. Cardiovasc Res. 2022;118(7):1618-1666. https://doi.org/10.1093/cvr/cvab343
  49. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. (08.11.2022). https://www.covid19treatmentguidelines.nih.gov/
  50. Biondi-Zoccai GG, Lotrionte M, Agostoni P, et al. A systematic review and meta-analysis on the hazards of discontinuing or not adhering to aspirin among 50,279 patients at risk for coronary artery disease. Eur Heart J. 2006;27(22):2667-2674. https://doi.org/10.1093/eurheartj/ehl334
  51. Drapkina OM, Drozdova LY, Avdeev SN, et al. The outpatient medical care in patients with chronic diseases under dispensary supervision in the conditions of the COVID-19 pandemic. Temporary guidelines. Version 2. Cardiovascular Therapy and Prevention. 2021;20(8):3172. (In Russ.). https://doi.org/10.15829/1728-8800-2021-3172
  52. Methodological recommendations «Features of the course of Long-COVID infection. Therapeutic and rehabilitation measures». Therapy. 2022;1(Appendix):1-147. (In Russ.). https://doi.org/10.18565/therapy.2022.1suppl.1-147
  53. Stable ischemic heart disease. Clinical recommendations approved by the Ministry of Health of the Russian Federation, 2020. (In Russ.). (16.11.2022). https://cr.minzdrav.gov.ru/recomend/155_1
  54. Acute coronary syndrome without ST segment elevation electrocardiogram. Clinical recommendations approved by the Ministry of Health of the Russian Federation, 2020. (In Russ.). (16.11.2022). https://cr.minzdrav.gov.ru/recomend/154_3
  55. Acute myocardial infarction with ST segment elevation electrocardiogram. Clinical recommendations approved by the Ministry of Health of the Russian Federation, 2020. (In Russ.). (16.11.2022). https://cr.minzdrav.gov.ru/recomend/157_4
  56. US Preventive Services Task Force, Davidson KW, Barry MJ, et al. Aspirin Use to Prevent Cardiovascular Disease: US Preventive Services Task Force Recommendation Statement. JAMA. 2022;327(16):1577-1584. https://doi.org/10.1001/jama.2022.4983
  57. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227-3337. https://doi.org/10.1093/eurheartj/ehab484
  58. Steg PG, Huber K, Andreotti F, et al. Bleeding in acute coronary syndromes and percutaneous coronary interventions: position paper by the Working Group on Thrombosis of the European Society of Cardiology. Eur Heart J. 2011;32(15):1854-1864. https://doi.org/10.1093/eurheartj/ehr204
  59. Drapkina OM, Buryachkovskaya LI, Vavilova TV, et al. Resolution of the Council of Experts on the exchange of scientific experience in the use of antiplatelet agents, including acetylsalicylic acid, as a prevention of arterial vascular complications of COVID-19 in different periods of the disease. Therapy. 2021;9:113-124. (In Russ.). https://doi.org/10.18565/therapy.2021.9.113-124
  60. Guimarães Sousa S, Kleiton de Sousa A, Maria Carvalho Pereira C, et al. SARS-CoV-2 infection causes intestinal cell damage: Role of interferon’s imbalance. Cytokine. 2022;152:155826. https://doi.org/10.1016/j.cyto.2022.155826
  61. Cheung KS, Hung IFN, Chan PPY, et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology. 2020;159(1):81-95.  https://doi.org/10.1053/j.gastro.2020.03.065
  62. Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(7):667-678.  https://doi.org/10.1016/S2468-1253(20)30126-6
  63. Sultan S, Altayar O, Siddique SM, et al. AGA Institute Rapid Review of the Gastrointestinal and Liver Manifestations of COVID-19, Meta-Analysis of International Data, and Recommendations for the Consultative Management of Patients with COVID-19. Gastroenterology. 2020;159(1):320-334.e27.  https://doi.org/10.1053/j.gastro.2020.05.001
  64. Ivashkin VT, Sheptulin AA, Zolnikova OYu, et al. New Coronavirus Infection (COVID-19) and Digestive System. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(2):7-13. (In Russ.). https://doi.org/10.22416/1382-4376-2020-30-3-7
  65. Livanos AE, Jha D, Cossarini F, et al. Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients With Gastrointestinal Symptoms. Gastroenterology. 2021;160(7):2435-2450.e34.  https://doi.org/10.1053/j.gastro.2021.02.056
  66. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020;323(18):1843-1844. https://doi.org/10.1001/jama.2020.3786
  67. Beskaravainaya T. Irrational use of anticoagulants in COVID-19 may increase the risks of dangerous bleeding (18.02.2022). (In Russ.). (08.11.2022). https://medvestnik.ru/content/news/Neracionalnoe-primenenie-antikoagulyantov-pri-COVID-19-mojet-uvelichivat-riski-opasnyh-krovotechenii.html
  68. Eikelboom JW, Connolly SJ, Bosch J, et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N Engl J Med. 2017;377(14):1319-1330. https://doi.org/10.1056/NEJMoa1709118

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.