The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Argunova Yu.A.

Research Institute for Complex Issues of Cardiovascular Diseases

Barbarash O.L.

Research Institute for Complex Issues of Cardiovascular Diseases

Cardiac protective strategies in preoperative management prior to coronary artery bypass grafting

Authors:

Argunova Yu.A., Barbarash O.L.

More about the authors

Read: 1185 times


To cite this article:

Argunova YuA, Barbarash OL. Cardiac protective strategies in preoperative management prior to coronary artery bypass grafting. Russian Journal of Cardiology and Cardiovascular Surgery. 2022;15(3):236‑241. (In Russ.)
https://doi.org/10.17116/kardio202215031236

Recommended articles:
Left ante­rior descending artery and diagonal branch bypass in multiple-vessel coro­nary artery disease. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(6):646-650
Radionuclide methods in analysis of myocardial perfusion and meta­bolic acti­vity. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2024;(4):12-19
Reclassification of ischemic heart disease epidemiological criteria. Russian Journal of Preventive Medi­cine. 2024;(12):61-68

References:

  1. Davidson SM, Ferdinandy P, Andreadou I. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol. 2019;73(1):89-99.  https://doi.org/10.1016/j.jacc.2018.09.086
  2. Argunova YuA, Pomeshkina SA, Barbarash OL. Cardiac rehabilitation and frailty (a literature review). Complex Issues of Cardiovascular Diseases. 2020;9(4):71-79. (In Russ.). https://doi.org/10.17802/2306-1278-2020-9-4-71-79
  3. Bokeria LA, Aronov DM, et al. Russian clinical guidelines. Coronary artery bypass grafting in patients with coronary artery disease: rehabilitation and secondary prevention. Cardiosomatics. 2016;7(3-4):5-71. (In Russ.). https://doi.org/10.26442/CS45210
  4. Argunova YuA, Trubnikova OA, Kagan ES, Barbarash OL. Correlation of preoperative adherence to treatment and risk of early postoperative cognitive dysfunction in patients undergoing coronary artery bypass grafting. Kardiologicheskij vestnik. 2017;12(2):54-59. (In Russ.).
  5. Pedersen E, Garcia BH, Halvorsen KH, et al. Adherence to prescription guidelines and achievement of treatment goals among persons with coronary heart disease in Tromsø 7. BMC Cardiovasc Disord. 2021;21(1):44.  https://doi.org/10.1186/s12872-021-01866-1
  6. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019; 40(2):87-165.  https://doi.org/10.1093/eurheartj/ehy394
  7. Hillis LD, Smith PK, Anderson JL, et al. 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery: A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2011;124:652-735.  https://doi.org/10.1161/CIR.0b013e31823c074e
  8. Myles PS, Smith JA, Forbes A, et al. ATACAS Investigators of the ANZCA Clinical Trials Network. Stopping vs. Continuing Aspirin before Coronary Artery Surgery. N Engl J Med. 2016;374(8):728-737.  https://doi.org/10.1056/NEJMoa1507688
  9. Hastings S, Myles P, McIlroy D. Aspirin and coronary artery surgery: A systematic review and meta-analysis. Br J Anaesth. 2015;115(3):376-385.  https://doi.org/10.1093/bja/aev164
  10. Aboul-Hassan SS, Stankowski T, Marczak J, et al. Timing strategy of preoperative aspirin and its impact on early outcomes in patients undergoing coronary artery bypass grafting: A propensity score matching analysis. J Surg Res. 2020;246:251-259.  https://doi.org/10.1016/j.jss.2019.09.026
  11. Aboul-Hassan SS, Marczak J, Stankowski T, et al. Association between preoperative aspirin and acute kidney injury following coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2020;160(3):712-719.  https://doi.org/10.1016/j.jtcvs.2019.08.119
  12. Sousa-Uva M, Head SJ, Milojevic M, et al. 2017 EACTS Guidelines on perioperative medication in adult cardiac surgery. Eur J Cardiothorac Surg. 2018;53(1):5-33.  https://doi.org/10.1093/ejcts/ezx314
  13. Kim SH, Jang MJ, Hwang HY. Perioperative beta-blocker for atrial fibrillation after cardiac surgery: A meta-analysis. Thorac Cardiovasc Surg. 2021;69(2):133-140.  https://doi.org/10.1055/s-0040-1708472
  14. Wang L, Wang H, Hou X. Short-term effects of preoperative beta-blocker use for isolated coronary artery bypass grafting: A systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2018;155(2):620-629.e1.  https://doi.org/10.1016/j.jtcvs.2017.08.025
  15. Kohsaka S, Miyata H, Motomura N, et al. Effects of preoperative β-blocker use on clinical outcomes after coronary artery bypass grafting: A report from the Japanese cardiovascular surgery database. Anesthesiology. 2016;124(1):45-55.  https://doi.org/10.1097/ALN.0000000000000901
  16. Filardo G, da Graca B, Sass DM, et al. Preoperative β-blockers as a coronary surgery quality metric: The lack of evidence of efficacy. Ann Thorac Surg. 2020;109(4):1150-1158. https://doi.org/10.1016/j.athoracsur.2019.07.056
  17. Park J, Lee SH, Jeong DS, et al. Association between β-blockers and outcome of coronary artery bypass grafting: before and after 1 year. Ann Thorac Surg. 2021;111(1):69-75.  https://doi.org/10.1016/j.athoracsur.2020.04.127
  18. Liakopoulos OJ, Kuhn EW, Slottosch I, et al. North-Rhine-Westphalia Study Group. Statin therapy in patients undergoing coronary artery bypass grafting for acute coronary syndrome. Thorac Cardiovasc Surg. 2018;66(6):434-441.  https://doi.org/10.1055/s-0037-1602257
  19. Kaushik A, Kapoor A, Agarwal SK, et al. Effect of statin on perioperative myocardial injury in isolated valve surgery. Asian Cardiovasc Thorac Ann. 2020:218492320974514. https://doi.org/10.1177/0218492320974514
  20. Wang X, Chen J, Huang X. Rosuvastatin attenuates myocardial ischemia-reperfusion injury via upregulating mir-17-3p-mediated autophagy. Cell Reprogram. 2019;21(6):323-330.  https://doi.org/10.1089/cell.2018.0053
  21. Zheng Z, Jayaram R, Jiang L, et al. Perioperative rosuvastatin in cardiac surgery. N Engl J Med. 2016;374(18):1744-1753. https://doi.org/10.1056/NEJMoa1507750
  22. Kuhn EW, Slottosch I, Wahlers T, Liakopoulos OJ. Preoperative statin therapy for patients undergoing cardiac surgery. Cochrane Database Syst Rev. 2015;(8):CD008493. https://doi.org/10.1002/14651858.CD008493.pub3
  23. Putzu A, Gallo M, Ferrari E, et al. Statin therapy before cardiac surgery: neutral or detrimental effects? Anesthesiology. 2018;128(3):685-686.  https://doi.org/10.1097/ALN.0000000000002061
  24. Putzu A, Capelli B, Belletti A, et al. Perioperative statin therapy in cardiac surgery: A meta-analysis of randomized controlled trials. Crit Care. 2016;20(1):395.  https://doi.org/10.1186/s13054-016-1560-6
  25. Park J, Lee JH, Kim KA, et al. Effects of preoperative statin on acute kidney injury after off-pump coronary artery bypass grafting. J Am Heart Assoc. 2019;8(7):e010892. https://doi.org/10.1161/JAHA.118.010892
  26. Wang Y, Zhu S, DU R, et al. Statin initiation and renal outcomes following isolated coronary artery bypass grafting: A meta-analysis. J Cardiovasc Surg (Torino). 2018;59(2):282-290.  https://doi.org/10.23736/S0021-9509.17.10074-1
  27. Seese L, Sultan I, Wang Y, et al. The effect of angiotensin-converting enzyme inhibitor exposure on coronary artery bypass grafting. J Card Surg. 2020;35(1):58-65.  https://doi.org/10.1111/jocs.14385
  28. Benedetto U, Melina G, Capuano F, et al. Preoperative angiotensin-converting enzyme inhibitors protect myocardium from ischemia during coronary artery bypass graft surgery. J Cardiovasc Med (Hagerstown). 2008;9(11):1098-1103. https://doi.org/10.2459/JCM.0b013e32830a6daf
  29. Johnston K, Stephens S. Effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on risk of atrial fibrillation before coronary artery bypass grafting. Ann Pharmacother. 2012;46(9):1239-1244. https://doi.org/10.1345/aph.1R128
  30. Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997;29(1):207-216.  https://doi.org/10.1006/jmcc.1996.0265
  31. Gilyarevskiy SR, Rezvan VV, Kuzmina IM, Golshmid MV. Modern approaches to anti-ischemic therapy in patients with stable coronary artery disease. RMZh. 2014;12:928-932. (In Russ.).
  32. Lenz M, Kaun C, Krychtiuk KA, et al. Effects of nicorandil on inflammation, apoptosis and atherosclerotic plaque progression. Biomedicines. 2021;9(2):120.  https://doi.org/10.3390/biomedicines9020120
  33. Wang S, Duan Y, Feng X, et al. Sustained nicorandil administration reduces the infarct size in ST-segment elevation myocardial infarction patients with primary percutaneous coronary intervention. Anatol J Cardiol. 2019;21(3):163-171.  https://doi.org/10.14744/AnatolJCardiol.2018.57383
  34. Wang ZD, Li H, Liu M, et al. Effect of intravenous application of nicorandil on area of myocardial infarction in patients with STEMI during the perioperative stage of PCI. Clin Hemorheol Microcirc. 2021;77(4):411-423.  https://doi.org/10.3233/CH-200998
  35. Zhou J, Xu J, Cheng A, et al. Effect of nicorandil treatment adjunctive to percutaneous coronary intervention in patients with acute myocardial infarction: A systematic review and meta-analysis. J Int Med Res. 2020;48(11):300060520967856. https://doi.org/10.1177/0300060520967856
  36. Kimura N, Kawahito K, Adachi K, et al. Effects of intra-coronary and intra-graft administration of nicorandil for coronary spasm after coronary artery bypass grafting. Kyobu Geka. 2006;59(1):71-77. 
  37. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). European Heart Journal. 2020;41(3):407-477.  https://doi.org/10.1093/eurheartj/ehz425
  38. Di Napoli P, Chierchia S, Taccardi AA, et al. Trimetazidine improves post-ischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts. Nitric Oxide. 2007;16:228-236.  https://doi.org/10.1016/j.niox.2006.09.001
  39. Kallistratos MS, Poulimenos LE, Giannitsi S, et al. Trimetazidine in the prevention of tissue ischemic conditions. Angiology. 2019;70(4):291-298.  https://doi.org/10.1177/0003319718780551
  40. Wang C, Chen W, Yu M, Yang P. Efficacy of trimetazidine in limiting periprocedural myocardial injury in patients undergoing percutaneous coronary intervention: A systematic review and meta-analysis. Angiology. 2021;72(6):511-523.  https://doi.org/10.1177/0003319720987745
  41. Aksun M, Aksun S, Kestelli M, et al. The postoperatıve effects of use of trimetazidine before the coronary artery bypass graft surgery. Niger J Clin Pract. 2019;22(7):997-1001. https://doi.org/10.4103/njcp.njcp_587_18
  42. Pichugin V, Antsygina L, Kordatov P, Maksimov A. Myocardial Preconditioning with Trimetazidine in On-Pump Coronary Artery Bypass Surgery. Vrach. 2014;4: 27-32. (In Russ.).
  43. Argunova YuA, Zvereva TN, Pomeshkina SA, et al. Optimizing of a comprehensive prehabilitation program for patients with stable coronary artery disease undergoing elective coronary artery bypass grafting. Rational Pharmacotherapy in Cardiology. 2020;16(4):508-515. (In Russ.). https://doi.org/10.20996/1819-6446-2020-08-06
  44. Papp Z, Agostoni P, Alvarez J, et al. Levosimendan Efficacy and Safety: 20 Years of SIMDAX in Clinical Use. J Cardiovasc Pharmacol. 2020;76(1):4-22.  https://doi.org/10.1097/FJC.0000000000000859
  45. Stroethoff M, Bunte S, Raupach A, et al. Impact of Ca2+-sensitive potassium channels in levosimendan-induced postconditioning. Cardiovasc Drugs Ther. 2019;33(5):581-588.  https://doi.org/10.1007/s10557-019-06908-7
  46. Bunte S, Behmenburg F, Bongartz A, et al. Preconditioning by Levosimendan is Mediated by Activation of Mitochondrial Ca2+-Sensitive Potassium (mBKCa) Channels. Cardiovasc Drugs Ther. 2018;32(5):427-434.  https://doi.org/10.1007/s10557-018-6819-5
  47. Follath F, Cleland JG, Just H, et al. Steering Committee and Investigators of the Levosimendan Infusion versus Dobutamine (LIDO) Study. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): A randomized double-blind trial. Lancet. 2002;360(9328):196-202.  https://doi.org/10.1016/s0140-6736(02)09455-2
  48. Wang W, Zhou X, Liao X, Liu B, Yu H. The efficacy and safety of prophylactic use of levosimendan on patients undergoing coronary artery bypass graft: A systematic review and meta-analysis. J Anesth. 2019;33(4):543-550.  https://doi.org/10.1007/s00540-019-02643-3
  49. van Diepen S, Mehta RH, Leimberger JD, et al. Levosimendan in patients with reduced left ventricular function undergoing isolated coronary or valve surgery. J Thorac Cardiovasc Surg. 2020;159(6):2302-2309.e6.  https://doi.org/10.1016/j.jtcvs.2019.06.020
  50. Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17(12):773-789.  https://doi.org/10.1038/s41569-020-0403-y
  51. Barau C, Ghaleh B, Berdeaux A, Morin D. Cytochrome P450 and myocardial ischemia: potential pharmacological implication for cardioprotection. Fundam Clin Pharmacol. 2015;29(1):1-9.  https://doi.org/10.1111/fcp.12087
  52. Nikolaou PE, Boengler K, Efentakis P, et al. Investigating and re-evaluating the role of glycogen synthase kinase 3 beta kinase as a molecular target for cardioprotection by using novel pharmacological inhibitors. Cardiovasc Res. 2019;115(7):1228-1243. https://doi.org/10.1093/cvr/cvz061
  53. Kuka J, Vilskersts R, Cirule H, et al. The cardioprotective effect of mildronate is diminished after co-treatment with L-carnitine. J Cardiovasc Pharmacol Ther. 2012;17(2):215-222.  https://doi.org/10.1177/1074248411419502
  54. Dastan F. Evaluating the potential effect of l-carnitine on the prevention of AF following coronary artery bypass graft surgery: A randomised clinical trial. Eur Cardiol. 2020;15:e42.  https://doi.org/10.15420/ecr.2020.15.1.PO19

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.