The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Atkov O.Yu.

FSBEI FPE Russian Medical Academy of Continuous Professional Education, 2/1, Barrikadnaya ul., 125993 Moscow, Russian Federation

Gorokhova S.G.

FSBEI FPE Russian Medical Academy of Continuous Professional Education, 2/1, Barrikadnaya ul., 125993 Moscow, Russian Federation

Circadian genes and circulatory system

Authors:

Atkov O.Yu., Gorokhova S.G.

More about the authors

Journal: Russian Cardiology Bulletin. 2019;14(2): 36‑42

Read: 3473 times


To cite this article:

Atkov OYu, Gorokhova SG. Circadian genes and circulatory system. Russian Cardiology Bulletin. 2019;14(2):36‑42. (In Russ.)
https://doi.org/10.17116/Cardiobulletin20191402136

Recommended articles:
Predictors and impact of myocardial injury (VARC-3 criteria) after transcatheter aortic valve implantation. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(5):489-498
The possibilities of Mexi­dol in the complex therapy of arte­rial hype­rtension. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(5):572-580
Myocardial infa­rction in young age. Russian Journal of Preventive Medi­cine. 2024;(11):77-84
Cuffless methods of blood pressure measurements. Review of modern technologies. Russian Journal of Preventive Medi­cine. 2024;(12):156-162
Modern aspe­cts of chro­nic cere­bral ischemia pathogenetic therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):106-113

References:

  1. Chazov EI. Mesto i rol’ vysokih tehnologij v kardiologicheskoj praktike. Ter arhiv. 1999;6:10-16. (In Russ.)
  2. Chazov EI, Tkachuk VA, Shirinskij VP. Perspektivy gennoj terapii serdechno-sosudistyh zabolevanij. Vestnik Rossijskoj Akademii Nauk. 1999;69(1):16-31.(In Russ.)
  3. Atkov OYu, Tsfasman AZ. Professional’nayabioritmologiya. M.: Izdatel’stvo Eksmo; 2019. (In Russ.)
  4. Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008;9(10):764-775. https://doi.org/10.1038/nrg2430
  5. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517-549. https://doi.org/10.1146/annurev-physiol-021909-135821
  6. Martino TA, Sole MJ. Molecular time: an often overlooked dimension to cardiovascular disease. Circ Res. 2009;105:1047-1061. https://doi.org/10.1161/CIRCRESAHA.109.206201
  7. Saito T, Hirano M, Ide T, Ichiki T, Koibuchi N, Sunagawa K, Hirano K. Pivotal role of Rho-associated kinase 2 in generating the intrinsic circadian rhythm of vascular contractility. Circulation. 2013;127:104-114. https://doi.org/10.1161/CIRCULATIONAHA.112.135608
  8. Takeda N, Maemura K. Circadian clock and cardiovascular disease. J Cardiol. 2011;57(3):249-256. https://doi.org/10.1016/j.jjcc.2011.02.006
  9. Podobed P, Pyle WG, Ackloo S, Alibhai FJ, Tsimakouridze EV, Ratcliffe WF, Mackay A, Simpson J, Wright DC, Kirby GM, Young ME, Martino TA. The day/night proteome in the murine heart. Am J Physiol Regul Integr Comp Physiol. 2014;307(2):121-137. https://doi.org/10.1152/ajpregu.00011.2014
  10. Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, Peden BW, Thompson EG, Ammons BJ, Bray MS, Chatham JC, Wende AR, Yang Q, Chow CW, Martino TA, Gamble KL. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythm. 2014;29(4):257-276. https://doi.org/10.1177/0748730414543141
  11. Scheer FA, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. Blood. 2014;123(4):590-593. https://doi.org/10.1182/blood-2013-07-517060
  12. Scheer FA, Hu K, Evoniuk H, Kelly EE, Malhotra A, Hilton MF, Shea SA. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci USA. 2010;107(47):20541-20546. https://doi.org/10.1073/pnas.1006749107
  13. Mavroudis PD, Scheff JD, Calvano SE, Lowry SF Androulakis IP. Entrainment of peripheral clock genes by cortisol. Physiol Genomics. 2012;44(11):607-621. https://doi.org/10.1152/physiolgenomics.00001.2012
  14. Anea CB, Cheng B, Sharma S, Kumar S, Caldwell RW, Yao L, Ali MI, Merloiu AM, Stepp DW, Black SM, Fulton DJ, Rudic RD. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice. Circ Res. 2012;111:1157-1165. https://doi.org/10.1161/CIRCRESAHA.111.261750
  15. Durgan DJ, Tsai JY, Grenett MH, Pat BM, Ratcliffe WF, Villegas-Montoya C, Garvey ME, Nagendran J, Dyck JR, Bray MS, Gamble KL, Gimble JM, Young ME. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol Intern. 2011;28(3):187-203. https://doi.org/10.3109/07420528.2010.550406
  16. Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai JY, Bugger H, Zhang D, Rohrwasser A, Rennison JH, Dyck JR, Litwin SE, Hardin PE, Chow CW, Chandler MP, Abel ED, Young ME. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol. 2008;294(2):1036-1047. https://doi.org/10.1152/ajpheart.01291.2007
  17. Tsimakouridze EV, Straume M, Podobed PS, Chin H, LaMarre J, Johnson R, Antenos M, Kirby GM, Mackay A, Huether P, Simpson JA, Sole M, Gadal G, Martino TA. Chronomics of pressure overload-induced cardiac hypertrophy in mice reveals altered day/night gene expression and biomarkers of heart disease. Chronobiol Int. 2012;29(7):810-821. https://doi.org/10.3109/07420528.2012.691145
  18. Tsimakouridze E, Alibhai FJ, Martino TA. Therapeutic applications of circadian rhythms for the cardiovascular system. Front Pharmacol. 2015;6:77. https://doi.org/10.3389/fphar.2015.00077
  19. Martino TA, Sole MJ. Molecular time: an often overlooked dimension to cardiovascular disease. Circ Res. 2009;105:1047-1061. https://doi.org/10.1161/CIRCRESAHA.109.206201
  20. Lefta M, Campbell KS, Feng HZ, Jin JP, Esser KA. Development of dilatedcardiomyopathy in Bmal1-deficientmice. Am J Physiol Heart Circ Physiol. 2012;303(4):475-485. https://doi.org/10.1152/ajpheart.00238.2012
  21. Ingle KA, Kain V, Goel M, Prabhu SD, Young ME, Halade GV. Cardiomyocyte-specific Bmal1 deletion in mice triggers diastolic dysfunction, extracellular matrix response, and impaired resolution of inflammation. Am J Physiol Heart Circ Physiol. 2015;309(11):1827-1836. https://doi.org/10.1152/ajpheart.00608.2015
  22. Scott EM. Circadian clocks, obesity and cardiometabolic function. Diabetes Obes Metab. 2015;17(suppl 1):84-89. https://doi.org/10.1111/dom.12518
  23. Sheng CS, Cheng YB, Wei FF, Yang WY, Guo QH, Li FK, Huang QF, Thijs L, Staessen JA, Wang JG, Li Y. Diurnal blood pressure rhythmicity in relation to environmental and genetic cues in untreated referred patients. Hypertension. 2017;69(1):128-135. https://doi.org/10.1161/HYPERTENSIONAHA.116.07958
  24. Stow LR, Richards J, Cheng KY, Lynch IJ, Jeffers LA, Greenlee MM, Cain BD, Wingo CS, Gumz ML. The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension. 2012;59:1151-1156. https://doi.org/10.1161/HYPERTENSIONAHA.112.190892
  25. Richards J, Diaz AN, Gumz ML. Clockgenes in hypertension: novelinsights from rodentmodels. Blood Press Monit. 2014;19(5):249-254. https://doi.org/10.1097/MBP.0000000000000060
  26. Xie Z, Su W, Liu S, Zhao G, Esser K, Schroder EA, Lefta M, Stauss HM, Guo Z, Gong MC. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J Clin Invest. 2015;125(1):324-336. https://doi.org/10.1172/JCI76881
  27. Anea CB, Zhang M, Chen F, Ali MI, Hart CM, Stepp DW, Kovalenkov YO, Merloiu AM, Pati P, Fulton D, Rudic RD. Circadian clock control of nox4 and reactive oxygen species in the vasculature. PLoSOne. 2013;8:e78626. https://doi.org/10.1371/journal.pone.0078626
  28. Kunieda T, Minamino T, Miura K, Katsuno T, Tateno K, Miyauchi H, Kaneko S, Bradfield CA, Fitzgerald GA, Komuro I. Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ Res. 2008;102:607-614. https://doi.org/10.1161/CIRCRESAHA.107.162230
  29. Woon PY, Kaisaki PJ, Bragança J, Bihoreau MT, Levy JC, Farrall M, Gauguier D. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA. 2007;104(36):14412-14417. https://doi.org/10.1073/pnas.0703247104
  30. Ghantous CM, Kobeissy FH, Soudani N, Rahman FA, Al-Hariri M, Itani HA, Sabra R, Zeidan A. Mechanical stretch-induced vascular hypertrophy occurs through modulation of leptin synthesis-mediated ROS formation and GATA-4 nuclear translocation. Front Pharmacol. 2015;6:240. https://doi.org/10.3389/fphar.2015.00240
  31. Takeda N, Maemura K. Circadian clock and the onset of cardiovascular events. Hypertens Res. 2016;39(6):383-390. https://doi.org/10.1038/hr.2016.9
  32. Woon PY, Kaisaki PJ, Braganpa J, Bihoreau MT, Levy JC, Farrall M, Gauguier D. Aryl hydrocarbonreceptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertensionandtype 2 diabetes. Proc Nat Acad Sci USA. 2007;104:14412-14417. https://doi.org/10.1073/pnas.0703247104
  33. van den Berg CB, Chaves I, Herzog EM, Willemsen SP, van der Horst GTJ, Steegers-Theunissen RPM. Early- and late-onset preeclampsia and the DNA methylation of circadian clock and clock-controlled genes in placental and newborn tissues. Chronobiol Int. 2017;34(7):921-932. https://doi.org/10.1080/07420528.2017.1326125
  34. Karoutsos D, Karoutsos P, Karoutsou E. The Biological Clock and Vascular Disease: Application to Pregnancy. J Clin Epigenetics. 2017;3(1):1-7. https://doi.org/10.21767/2472-1158.100036
  35. Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA. Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci USA. 2007;104:3450-3455. https://doi.org/10.1073/pnas.0611680104
  36. Oster H, Baeriswyl S, van der Horst GT, Albrecht U. Loss of circadian rhythmicity in aging mPer1-/-mCry2-/- mutant mice. Genes Dev. 2003;17:1366-1379. https://doi.org/10.1101/gad.256103
  37. Kovanen L, Donner K, Kaunisto M, Partonen T. CRY1, CRY2 and PRKCDBP genetic variants in metabolic syndrome. Hypertens Res. 2015;38:186-192. https://doi.org/10.1038/hr.2014.157
  38. Stow LR, Richards J, Cheng KY, Lynch IJ, Jeffers LA, Greenlee MM, Cain BD, Wingo CS, Gumz ML. The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension. 2012;59:1151-1156. https://doi.org/10.1161/HYPERTENSIONAHA.112.190892
  39. Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Haraguchi S, Emoto N, Okuno Y, Tsujimoto G, Kanematsu A, Ogawa O, Todo T, Tsutsui K, van der Horst GT, Okamura H. Salt-sensitive hypertension in circadian clock-deficient Cry- null mice involves dysregulated adrenal Hsd3b6. Nat Med. 2010;16:67-74. https://doi.org/10.1038/nm.2061
  40. Leu HB, Chung CM, Lin SJ, Chiang KM, Yang HC, Ho HY, Ting CT, Lin TH, Sheu SH, Tsai WC, Chen JH, Yin WH, Chiu TY, Chen CI, Fann CS, Chen YT, Pan WH, Chen JW. Association of circadiangenes with diurnalbloodpressurechanges and non-dipperessentialhypertension: a geneticassociation with young-onsethypertension. Hypertens Res. 2015;38(2):155-162. https://doi.org/10.1038/hr.2014.152
  41. Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Weaver DR, Wingo CS. The circadian clock protein Period 1regulatesexpression of the renalepithelial sodium channel in mice. J Clin Invest. 2009;119(8):2423-2434. https://doi.org/10.1172/JCI36908
  42. Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger JA, Hu K, Lu Y, Eapen BL, Sharma N, Ficker E, Cutler MJ, Gulick J, Sanbe A, Robbins J, Demolombe S, Kondratov RV, Shea SA, Albrecht U, Wehrens XH, Rosenbaum DS, Jain MK. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature. 2012;483:96-99. https://doi.org/10.1038/nature10852
  43. Schroder EA, Burgess DE, Zhang X, Lefta M, Smith JL, Patwardhan A, Bartos DC, Elayi CS, Esser KA, Delisle BP. The cardiomyocyte molecular clock regulates the circadian expression of Kcnh2 and contributes to ventricular repolarization. Heart Rhythm. 2015;12(6):1306-1314. https://doi.org/10.1016/j.hrthm.2015.02.019
  44. Mistry DA, Duong A, Kirshenbaum L, Martino TA. Cardiac Clocks and Preclinical Translation. Heart Failure Clinics. 2017;13(4):657-672. https://doi.org/10.1016/j.hfc.2017.05.002
  45. Fournier S, Taffé P, Radovanovic D, Von Elm E, Morawiec B, Stauffer JC, Erne P, Beggah A, Monney P, Pascale P, Iglesias JF, Eeckhout E, Muller O. Myocardial infarct size and mortality depend on the time of day-a large multicenter study. PLoS One. 2015;10(3):e0119157. https://doi.org/10.1371/journal.pone.0119157
  46. Hemmeryckx B, Frederix L, Lijnen HR. Deficiency of Bmal1 disrupts the diurnal rhythm of haemostasis. Exp Gerontol. 2019;118:1-8. https://doi.org/10.1016/j.exger.2018.12.017
  47. Bennardo M, Alibhai F, Tsimakouridze E, Chinnappareddy N, Podobed P, Reitz C, Pyle WG, Simpson J, Martino TA. Day-night dependence of gene expression and inflammatory responses in the remodeling murine heart post-myocardial infarction. Am J Physiol Regul Integr Comp Physiol. 2016;311(6):1243-1254. https://doi.org/10.1152/ajpregu.00200.2016
  48. Peden BW, Thompson EG, Ammons BJ, Bray MS, Chatham JC, Wende AR, Yang Q, Chow CW, Martino TA, Gamble KL. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms. 2014;29(4):257-276. https://doi.org/10.1177/0748730414543141
  49. Roberts R, Stewart AFR. Genetics of Coronary Artery Disease in the 21st Century. Clin Cardiol. 2012;35(9):536-540. https://doi.org/10.1002/clc.22002
  50. CARDIoGRAMplusC4D Consortium. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25-33. https://doi.org/10.1038/ng.2480
  51. Škrlec I, Milic J, Heffer M, Peterlin B, Wagner J. Genetic variations in circadian rhythmgenes and susceptibility for myocardial infarction. Genet Mol Biol. 2018;41(2):403-409. https://doi.org/10.1590/1678-4685-GMB-2017-0147
  52. Naumov V, Gorokhova S, Atkov OY, Muraseeva EV, Babikiova EA, Generozov EV, Moroshkina SA, Zaharczevskaya NB. Circadian genes in the regulation of lipids in coronary artery disease. Cardiovascular Research. 2014; 103(suppl 1):558-559. https://doi.org/10.1093/cvr/cvu091.11
  53. Gorokhova SG, Generozov EV, Atkov OYu, Muraseeva EV, Naumov VA, Babikova EA, Zaharczevskaya NB, Prigorovskaya TS. Different association of CRY1 and CLOCK circadian genes with coronary atherosclerosis. J Clin Exp Cardiolog. 2014;5:317. https://doi.org/10.4172/2155-9880.1000317
  54. Paschos GK, Baggs JE, Hogenesch JB, Fitzgerald GA. The role of clock genes in pharmacology. Annu Rev Pharmacol Toxicol. 2010;50:187-214. https://doi.org/10.1146/annurev.pharmtox.010909.105621

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.