The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Bakulin I.G.

Mechnikov North-Western State Medical University Ministry of Health of the Russian Federation

Akishina Yu.A.

Mechnikov North-Western State Medical University Ministry of Health of the Russian Federation

Lyamina S.V.

Russian University of Medicine Ministry of Health of the Russian Federation

Maev I.V.

Russian University of Medicine Ministry of Health of the Russian Federation

Potential role of short-chain fatty acids in the development of extraintestinal manifestations of Crohn’s disease

Authors:

Bakulin I.G., Akishina Yu.A., Lyamina S.V., Maev I.V.

More about the authors

Read: 290 times


To cite this article:

Bakulin IG, Akishina YuA, Lyamina SV, Maev IV. Potential role of short-chain fatty acids in the development of extraintestinal manifestations of Crohn’s disease. Russian Journal of Evidence-Based Gastroenterology. 2025;14(3):44‑55. (In Russ.)
https://doi.org/10.17116/dokgastro20251403144

Recommended articles:
Short-chain fatty acid profile in patients unde­rgoing maintenance hemo­dialysis. Russian Journal of Evidence-Based Gastroenterology. 2025;(1):47-54
Differential diagnosis of anemia in ulce­rative coli­tis: a clinical case. Russian Journal of Evidence-Based Gastroenterology. 2025;(2):115-120
Current global trends in the epidemiology of inflammatory bowel diseases. Russian Journal of Evidence-Based Gastroenterology. 2025;(3):104-117

References:

  1. Maev IV, Bakulin IG, Skalinskaya MI, Skazyvaeva EV. Inflammatory bowel diseases: Transformation of representations. A review. Terapevticheskij arkhiv. 2023;95(12):1064-1074. (In Russ.). https://doi.org/10.26442/00403660.2023.12.202507
  2. Nikitin AV, Volynets GV, Skvortsova TA, Kapranova MS. Extraintestinal manifestations of inflammatory bowel disease. Russian Journal of Evidence-Based Gastroenterology. 2023;12(1):93-98. (In Russ.). https://doi.org/10.17116/dokgastro20231201193
  3. Hedin CRH, Vavricka SR, Stagg AJ, Schoepfer A, Raine T, Puig L, Pleyer U, Navarini A, van der Meulen-de Jong AE, Maul J, Katsanos K, Kagramanova A, Greuter T, González-Lama Y, van Gaalen F, Ellul P, Burisch J, Bettenworth D, Becker MD, Bamias G, Rieder F. The Pathogenesis of Extraintestinal Manifestations: Implications for IBD Research, Diagnosis, and Therapy. Journal of Crohn’s and Colitis. 2019;13(5):541-554.  https://doi.org/10.1093/ecco-jcc/jjy191
  4. Bakulin IG, Skalinskaya MI, Skazyvaeva EV. North-Western register of patients with inflammatory bowel diseases: achievements and lessons learned. Koloproktologia. 2022;21(1):37-49. (In Russ.). https://doi.org/10.33878/2073-7556-2022-21-1-37-49
  5. Walldorf J, Twarz M, Schober C, Michl P, Hammer T. High frequency of secondary, but not primary ocular manifestations of inflammatory bowel disease in patients treated at a tertiary care center. European Journal of Gastroenterology and Hepatology. 2018;30(12):1502-1506. https://doi.org/10.1097/MEG.0000000000001248
  6. Karmiris K, Avgerinos A, Tavernaraki A, Zeglinas C, Karatzas P, Koukouratos T, Oikonomou KA, Kostas A, Zampeli E, Papadopoulos V, Theodoropoulou A, Viazis N, Polymeros D, Michopoulos S, Bamias G, Kapsoritakis A, Karamanolis DG, Mantzaris GJ, Tzathas C, Koutroubakis IE. Prevalence and characteristics of extra-intestinal manifestations in a large cohort of Greek patients with inflammatory bowel disease. Journal of Crohn’s and Colitis. 2016;10(4):429-436.  https://doi.org/10.1093/ecco-jcc/jjv232
  7. Gordon H, Burisch J, Ellul P, Karmiris K, Katsanos K, Allocca M, Bamias G, Barreiro-de Acosta M, Braithwaite T, Greuter T, Harwood C, Juillerat P, Lobaton T., Müller-Ladner U, Noor N, Pellino G, Savarino E, Schramm C, Soriano A, Michael Stein J, Uzzan M, van Rheenen PF, Vavricka SR, Vecchi M, Zuily S, Kucharzik T. ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. Journal of Crohn’s and Colitis. 2024;18(1):1-37.  https://doi.org/10.1093/ecco-jcc/jjad108
  8. Vavricka SR, Schoepfer A, Scharl M, Lakatos PL, Navarini A, Rogler G. Extraintestinal Manifestations of Inflammatory Bowel Disease. Inflammatory Bowel Diseases. 2015;21(8):1982-1992. https://doi.org/10.1097/MIB.0000000000000392
  9. Shen Y-H, Zhu H, Zhou L, Zheng Y-Q, Zhang Z, Xie Y, Liu Z-Q, Peng C-Y, Wang L, Zhao C, Zhang X-Q. In inflammatory bowel disease and extraintestinal manifestations: What role does microbiome play? Engineered Regeneration. 2023;4(4):337-348.  https://doi.org/10.1016/j.engreg.2023.04.005
  10. Whitfield C, Clarke BR. Lipopolysaccharides (Endotoxins). Encyclopedia of Microbiology. Fourth Edition. 2019:791-802.  https://doi.org/10.1016/B978-0-12-801238-3.07799-0
  11. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, Marmon S, Neimann A, Brusca S, Patel T, Manasson J, Pamer EG, Littman DR, Abramson SB. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis and Rheumatology. 2015;67(1):128-139.  https://doi.org/10.1002/art.38892
  12. Crost EH, Tailford LE, Monestier M, Swarbreck D, Henrissat B, Crossman LC, Juge N. The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases. Gut Microbes. 2016;7(4):302-312.  https://doi.org/10.1080/19490976.2016.1186334
  13. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(Suppl 1):4523-4530. https://doi.org/10.1073/pnas.1006734107
  14. Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells. 2023;12(5):793.  https://doi.org/10.3390/cells12050793
  15. Gallagher K, Catesson A, Griffin JL, Holmes E, Williams HRT. Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. Journal of Crohn’s and Colitis. 2021;15(5):813-826.  https://doi.org/10.1093/ecco-jcc/jjaa227
  16. Jagt JZ, Verburgt CM, de Vries R, de Boer NKH, Benninga MA, de Jonge WJ, van Limbergen JE, de Meij TGJ. Faecal Metabolomics in Paediatric Inflammatory Bowel Disease: A Systematic Review. Journal of Crohn’s and Colitis. 2022;16(11):1777-1790. https://doi.org/10.1093/ecco-jcc/jjac079
  17. Wang C, Gu Y, Chu Q, Wang X, Ding Y, Qin X, Liu T, Wang S, Liu X, Wang B, Cao H. Gut microbiota and metabolites as predictors of biologics response in inflammatory bowel disease: A comprehensive systematic review. Microbiological Research. 2024; 282:127660. https://doi.org/10.1016/j.micres.2024.127660
  18. Zhuang X, Li T, Li M, Huang S, Qiu Y, Feng R, Zhang S, Chen M, Xiong L, Zeng Z. Systematic Review and Meta-analysis: Short-Chain Fatty Acid Characterization in Patients With Inflammatory Bowel Disease. Inflammatory Bowel Diseases. 2019;25(11): 1751-1763. https://doi.org/10.1093/ibd/izz188
  19. Wang S, van Schooten FJ, Jin H, Jonkers D, Godschalk R. The Involvement of Intestinal Tryptophan Metabolism in Inflammatory Bowel Disease Identified by a Meta-Analysis of the Transcriptome and a Systematic Review of the Metabolome. Nutrients. 2023;15(13):2886. https://doi.org/10.3390/nu15132886
  20. Vakhitov TYa, Kononova SV, Demyanova EV, Morugina AS, Utsal VA, Sall TS, Skalinskaya MI, Bakulin IG, Khavkin AI, Sitkin SI. Serum metabolomic profile in patients with ulcerative colitis: pathophysiological role, diagnostic and therapeutic implications. Voprosy detskoj dietologii. 2023;21(5):5-15. (In Russ.). https://doi.org/10.20953/1727-5784-2023-5-5-15
  21. Wang J, Sun Q, Gao Y, Xiang H, Zhang C, Ding P, Wu T, Ji G. Metabolomics window into the diagnosis and treatment of inflammatory bowel disease in recent 5 years. International Immunopharmacology. 2022;113(Pt B):109472. https://doi.org/10.1016/j.intimp.2022.109472
  22. Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology. 2020;11:25.  https://doi.org/10.3389/fendo.2020.00025
  23. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutrition and Diabetes. 2014;4(6):e121. https://doi.org/10.1038/nutd.2014.23
  24. Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: from Metabolic Pathways to Current Therapeutic Implications. Life. 2024;14(5):559.  https://doi.org/10.3390/life14050559
  25. National Center for Biotechnology Information. PubChem Compound Summary for CID 175, Acetate. PubChem. 2025. Accessed May 18, 2025. https://pubchem.ncbi.nlm.nih.gov/compound/Acetate
  26. National Center for Biotechnology Information. PubChem Compound Summary for CID 104745, Propionate ion. PubChem. 2025. Accessed May 18, 2025. https://pubchem.ncbi.nlm.nih.gov/compound/Propionate-ion
  27. National Center for Biotechnology Information. PubChem Compound Summary for CID 5222465, Sodium Butyrate. PubChem. 2025. Accessed May 18, 2025. https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-Butyrate
  28. National Center for Biotechnology Information. PubChem Compound Summary for CID 7991, Valeric acid. PubChem. 2025. Accessed May 18, 2025. https://pubchem.ncbi.nlm.nih.gov/compound/Valeric-acid
  29. National Center for Biotechnology Information. PubChem Compound Summary for CID 4398339, Hexanoate. PubChem. 2025. Accessed May 18, 2025. https://pubchem.ncbi.nlm.nih.gov/compound/Hexanoate
  30. International Union of Pure and Applied Chemistry. Compendium of Chemical Terminology (Gold Book). Accessed May 18, 2025. https://goldbook.iupac.org/terms
  31. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221-1227. https://doi.org/10.1136/gut.28.10.1221
  32. Rechkemmer G, von Engelhardt W. Concentration- and pH-dependence of short-chain fatty acid absorption in the proximal and distal colon of guinea pig (Cavia porcellus). Comparative Biochemistry and Physiology. Part A: Comparative Physiology. 1988;91(4):659-663.  https://doi.org/10.1016/0300-9629(88)90944-9
  33. Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport l -lactate as well as butyrate. The Journal of Physiology. 1998; 513(Pt 3):719-732.  https://doi.org/10.1111/j.1469-7793.1998.719ba.x
  34. Miyauchi S, Gopal E, Fei YJ, Ganapathy V. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na+-coupled transporter for short-chain fatty acids. The Journal of Biological Chemistry. 2004;279:13293-13296. https://doi.org/10.1074/jbc.C400059200
  35. Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Current Opinion in Pharmacology. 2013;13(6):869-874.  https://doi.org/10.1016/j.coph.2013.08.006
  36. Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V. Short-Chain Fatty Acid Transporters: Role in Colonic Homeostasis. Comprehensive Physiology. 2017;8(1):299-314.  https://doi.org/10.1002/cphy.c170014
  37. Binder HJ, Mehta P. Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology. 1989;96(4):989-996.  https://doi.org/10.1016/0016-5085(89)91614-4
  38. Murase M, Kimura Y, Nagata Y. Determination of portal short-chain fatty acids in rats fed various dietary fibers by capillary gas chromatography. Journal of Chromatography. B: Biomedical Applications. 1995;664(2):415-420.  https://doi.org/10.1016/0378-4347(94)00491-m
  39. Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA, Dejong CH. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clinical Nutrition. 2009;28(6):657-661.  https://doi.org/10.1016/j.clnu.2009.05.011
  40. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology. 2015;11(10):577-591.  https://doi.org/10.1038/nrendo.2015.128
  41. Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host and Microbe. 2016;20(2):202-214.  https://doi.org/10.1016/j.chom.2016.07.001
  42. Wang CC, Wu H, Lin FH, Gong R, Xie F, Peng Y, Feng J, Hu CH. Sodium butyrate enhances intestinal integrity, inhibits mast cell activation, inflammatory mediator production and JNK signaling pathway in weaned pigs. Innate Immunity. 2018;24:40-46.  https://doi.org/10.1177/1753425917741970
  43. Kim CH. Microbiota or short-chain fatty acids: which regulates diabetes? Cellular and Molecular Immunology. 2018;15:88-91.  https://doi.org/10.1038/cmi.2017.57
  44. D’Souza WN, Douangpanya J, Mu S, Jaeckel P, Zhang M, Maxwell JR, Rottman JB, Labitzke K, Willee A, Beckmann H, Wang Y, Li Y, Schwandner R, Johnston JA, Towne JE, Hsu H. Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses. PLoS One. 2017;12(7):e0180190. https://doi.org/10.1371/journal.pone.0180190
  45. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA, Prasad PD, Ganapathy V. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Research. 2009;69(7): 2826-2832. https://doi.org/10.1158/0008-5472.CAN-08-4466
  46. Li M, van Esch B, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. European Journal of Pharmacology. 2018;831:52-59.  https://doi.org/10.1016/j.ejphar.2018.05.003
  47. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology. 2016;16:341-352.  https://doi.org/10.1038/nri.2016.42
  48. Wen ZS, Lu JJ, Zou XT. Effects of sodium butyrate on the intestinal morphology and dna-binding activity of intestinal nuclear factor-kappa b in weanling pigs. Journal of Animal and Veterinary Advances. 2012;11:814-821.  https://doi.org/10.3923/javaa.2012.814.821
  49. Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host and Microbe. 2013;13:711-722.  https://doi.org/10.1016/j.chom.2013.05.013
  50. Wu JL, Zou JY, Hu ED, Chen DZ, Chen L, Lu FB. Sodium butyrate ameliorates S100/FCA-induced autoimmune hepatitis through regulation of intestinal tight junction and toll-like receptor 4 signaling pathway. Immunology Letters. 2017;190:169-176.  https://doi.org/10.1016/j.imlet.2017.08.005
  51. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host and Microbe. 2015;17(5):662-671.  https://doi.org/10.1016/j.chom.2015.03.005
  52. Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, Onyiah JC, Kominsky DJ, Colgan SP. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. The Journal of Immunology. 2017;199(8):2976-2984. https://doi.org/10.4049/jimmunol.1700105
  53. Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein claudin-1 transcription. Digestive Diseases and Sciences. 2012;57:3126-3135. https://doi.org/10.1007/s10620-012-2259-4
  54. Zhao Y, Chen F, Wu W, Sun M, Bilotta AJ, Yao S, Kominsky DJ, Colgan SP. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunology. 2018;11(3):752-762.  https://doi.org/10.1038/mi.2017.118
  55. Shin Y, Han S, Kwon J, Ju S, Choi TG, Kang I, Kim SS. Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients. 2023;15(20):4466. https://doi.org/10.3390/nu15204466
  56. Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson ID, Wang Y. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. Journal of Proteome Research. 2007;6(2):546-551.  https://doi.org/10.1021/pr060470d
  57. Parada Venegas D, De la Fuente MK, Landskron G, González M., Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology. 2019;10:277.  https://doi.org/10.3389/fimmu.2019.00277
  58. Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68:1516-1526. https://doi.org/10.1136/gutjnl-2019-318427
  59. Fakhoury HMA, Kvietys PR, AlKattan W, Anouti FA, Elahi MA, Karras SN, Grant WB. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. Journal of Steroid Biochemistry and Molecular Biology. 2020;200:105663. https://doi.org/10.1016/j.jsbmb.2020.105663
  60. Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61-72.  https://doi.org/10.1136/gut.2006.094375
  61. Dignass AU, Podolsky DK. Cytokine modulation of intestinal epithelial cell restitution: central role of transforming growth factor beta. Gastroenterology. 1993;105(5):1323-1332. https://doi.org/10.1016/0016-5085(93)90136-z
  62. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, Mankertz J, Gitter AH, Bürgel N, Fromm M, Zeitz M, Fuss I, Strober W, Schulzke JD. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129(2):550-564.  https://doi.org/10.1016/j.gastro.2005.05.002
  63. Gitter AH, Wullstein F, Fromm M, Schulzke JD. Epithelial barrier defects in ulcerative colitis: characterization and quantification by electrophysiological imaging. Gastroenterology. 2001;121(6): 1320-1328. https://doi.org/10.1053/gast.2001.29694
  64. Nakamura YK, Janowitz C, Metea C, Asquith M, Karstens L, Rosenbaum JT, Lin P. Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Scientific Reports. 2017;7:11745. https://doi.org/10.1038/s41598-017-12163-3

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.