Крахмаль Н.В.

НИИ онкологии — филиал ФГБНУ «Томский национальный исследовательский медицинский центр» РАН;
ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России

Тараненко М.И.

НИИ онкологии — филиал ФГБНУ «Томский национальный исследовательский медицинский центр» РАН;
ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России

Наумов С.С.

НИИ онкологии — филиал ФГБНУ «Томский национальный исследовательский медицинский центр» РАН

Вторушин С.В.

НИИ онкологии — филиал ФГБНУ «Томский национальный исследовательский медицинский центр» РАН;
ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России

Прогностическое значение молекулярных маркеров IDO1, DCLK1 и FOXC1 при тройном негативном раке молочной железы: морфологические и клинические корреляции

Авторы:

Крахмаль Н.В., Тараненко М.И., Наумов С.С., Вторушин С.В.

Подробнее об авторах

Журнал: Архив патологии. 2025;87(3): 88‑96

Прочитано: 732 раза


Как цитировать:

Крахмаль Н.В., Тараненко М.И., Наумов С.С., Вторушин С.В. Прогностическое значение молекулярных маркеров IDO1, DCLK1 и FOXC1 при тройном негативном раке молочной железы: морфологические и клинические корреляции. Архив патологии. 2025;87(3):88‑96.
Krakhmal NV, Taranenko MI, Naumov SS, Vtorushin SV. Prognostic value of molecular markers IDO1, DCLK1 and FOXC1 in Triple-negative breast cancer: morphological and clinical correlations. Russian Journal of Archive of Pathology. 2025;87(3):88‑96. (In Russ.)
https://doi.org/10.17116/patol20258703188

Рекомендуем статьи по данной теме:
Оцен­ка рис­ков труд­ной ин­ту­ба­ции в ба­ри­ат­ри­чес­кой хи­рур­гии. Анес­те­зи­оло­гия и ре­ани­ма­то­ло­гия. 2025;(1):62-68
Диаг­нос­ти­ка и ле­че­ние ра­ка яич­ни­ков на фо­не бе­ре­мен­нос­ти. Рос­сий­ский вес­тник аку­ше­ра-ги­не­ко­ло­га. 2025;(3):27-33

Литература / References:

  1. Aphivatanasiri C, Li J, Chan R, Jamidi SK, Tsang JY, Poon IK, Shao Y, Tong J, To KF, Chan SK, et al. Combined SOX10 GATA3 is most sensitive in detecting primary and metastatic breast cancers: a comparative study of breast markers in multiple tumors. Breast Cancer Res Treat. 2020;184(1):11-21.  https://doi.org/10.1007/s10549-020-05818-9
  2. Jamidi SK, Hu J, Aphivatanasiri C, Tsang JY, Poon IK, Li JJ, Chan SK, Cheung SY, Tse GM. Sry-related high-mobility-group/HMG box 10 (SOX10) as a sensitive marker for triple-negative breast cancer. Histopathology. 2020;77(6):936-948.  https://doi.org/10.1111/his.14118
  3. Hu H, Tong K, Tsang JY, Ko CW, Tam F, Loong TC, Tse GM. Subtyping of triple-negative breast cancers: its prognostication and implications in diagnosis of breast origin. ESMO Open. 2024;9(4):102993. https://doi.org/10.1016/j.esmoop.2024.102993
  4. Zagami P, Carey LA. Triple negative breast cancer: pitfalls and progress. NPJ Breast Cancer. 2022;8(1):95.  https://doi.org/10.1038/s41523-022-00468-0
  5. Sanuki F, Mikami Y, Nishimura H, Fujita Y, Monobe Y, Nomura T, Taira N, Moriya T. Immunohistological analysis of B7-H4, IDO1, and PD-L1 expression and tumor immune microenvironment based on triple-negative breast cancer subtypes. Breast Cancer. 2023;30(6):1041-1053. https://doi.org/10.1007/s12282-023-01498-7
  6. Iacopetta D, Ceramella J, Baldino N, Sinicropi MS, Catalano A. Targeting breast cancer: an overlook on current strategies. Int J Mol Sci. 2023;24(4):3643. https://doi.org/10.3390/ijms24043643
  7. van den Ende NS, Nguyen AH, Jager A, Kok M, Debets R, van Deurzen CHM. Triple-negative breast cancer and predictive markers of response to neoadjuvant chemotherapy: a systematic review. Int J Mol Sci. 2023;24(3):2969. https://doi.org/10.3390/ijms24032969
  8. Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37(3):193-207.  https://doi.org/10.1016/j.it.2016.01.002
  9. Kim S, Park S, Cho MS, Lim W, Moon BI, Sung SH. Strong correlation of indoleamine 2,3-dioxygenase 1 expression with basal-like phenotype and increased lymphocytic infiltration in triple-negative breast cancer. J Cancer. 2017;8(1):124-130.  https://doi.org/10.7150/jca.17437
  10. Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S, Li Y. Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol. 2018;11(1):100.  https://doi.org/10.1186/s13045-018-0644-y
  11. Li Peng, Wu R, Li K, Yuan W, Zeng C, Zhang Y, Wang X, Zhu X, Zhou J, Li P, et al. IDO inhibition facilitates antitumor immunity of Vγ9Vδ2 T cells in triple-negative breast cancer. Front Oncol. 2021;11:679517. https://doi.org/10.3389/fonc.2021.679517
  12. Bilir C, Eskiler GG, Bilir F. The cytotoxic effects of indoleamine 2, 3-dioxygenase inhibitors on triple negative breast cancer cells upon tumor necrosis factor α stimulation. J Cancer Res Ther. 2023;19(Supplement):S74-S80.  https://doi.org/10.4103/jcrt.jcrt_2365_21
  13. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191-1193. https://doi.org/10.1126/science.281.5380.1191
  14. Yeung AW, Terentis AC, King NJ, Thomas SR. Role of indoleamine 2,3-dioxygenase in health and disease. Clin Sci (Lond). 2015;129(7):601-672.  https://doi.org/10.1042/CS20140392
  15. Yoshida R, Hayaishi O. Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc Natl Acad Sci USA. 1978;75(8):3998-4000. https://doi.org/10.1073/pnas.75.8.3998
  16. Pfefferkorn ER. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci USA. 1984;81(3):908-912.  https://doi.org/10.1073/pnas.81.3.908
  17. Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE, Boulden J, Sutanto-Ward E, Soler AP, Laury-Kleintop LD, et al. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2012;2(8):722-735.  https://doi.org/10.1158/2159-8290.CD-12-0014
  18. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother. 2014;63(7):721-735.  https://doi.org/10.1007/s00262-014-1549-4
  19. Prendergast GC, Mondal A, Dey S, Laury-Kleintop LD, Muller AJ. Inflammatory reprogramming with IDO1 inhibitors: turning immunologically unresponsive ‘cold’ tumors ‘hot’. Trends Cancer. 2018;4(1):38-58.  https://doi.org/10.1016/j.trecan.2017.11.005
  20. Metz R, Rust S, Duhadaway JB, Mautino MR, Munn DH, Vahanian NN, Link CJ, Prendergast GC. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology. 2012;1(9):1460-1468. https://doi.org/10.4161/onci.21716
  21. Vigneron N, van Baren N, Van den Eynde BJ. Expression profile of the human IDO1 protein, a cancer drug target involved in tumoral immune resistance. Oncoimmunology. 2015;4(5):e1003012. https://doi.org/10.1080/2162402X.2014.1003012
  22. Wei L, Zhu S, Li M, Li F, Wei F, Liu J, Ren X. High indoleamine 2,3-dioxygenase is correlated with microvessel density and worse prognosis in breast cancer. Front Immunol. 2018;9:724.  https://doi.org/10.3389/fimmu.2018.00724
  23. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34(3): 137-143.  https://doi.org/10.1016/j.it.2012.10.001
  24. Moon YW, Hajjar J, Hwu P, Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer. 2015;3:51.  https://doi.org/10.1186/s40425-015-0094-9
  25. Fujiwara Y, Kato S, Nesline MK, Conroy JM, DePietro P, Pabla S, Kurzrock R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev. 2022;110:102461. https://doi.org/10.1016/j.ctrv.2022.102461
  26. Liang X, Gao H, Xiao J, Han S, He J, Yuan R, Yang S, Yao C. Abrine, an IDO1 inhibitor, suppresses the immune escape and enhances the immunotherapy of anti-PD-1 antibody in hepatocellular carcinoma. Front Immunol. 2023;14:1185985. https://doi.org/10.3389/fimmu.2023.1185985
  27. Humphries MP, Craig SG, Kacprzyk R, Fisher NC, Bingham V, McQuaid S, Murray GI, McManus D, Turkington RC, James J, et al. The adaptive immune and immune checkpoint landscape of neoadjuvant treated esophageal adenocarcinoma using digital pathology quantitation. BMC Cancer. 2020;20(1):500.  https://doi.org/10.1186/s12885-020-06987-y
  28. Amobi-McCloud A, Muthuswamy R, Battaglia S, Yu H, Liu T, Wang J, Putluri V, Singh PK, Qian F, Huang RY, et al. IDO1 expression in ovarian cancer induces PD-1 in T cells via aryl hydrocarbon receptor activation. Front Immunol. 2021;12:678999. https://doi.org/10.3389/fimmu.2021.678999
  29. Tsai YS, Jou YC, Tsai HT, Cheong IS, Tzai TS. Indoleamine-2,3-dioxygenase-1 expression predicts poorer survival and up-regulates ZEB2 expression in human early stage bladder cancer. Urol Oncol. 2019;37(11):810.e17-810.e27.  https://doi.org/10.1016/j.urolonc.2019.05.005
  30. Atri-Schuller A, Abushukair H, Cavalcante L, Hentzen S, Saeed A, Saeed A. Tumor molecular and microenvironment characteristics in EBV-associated malignancies as potential therapeutic targets: focus on gastric cancer. Curr Issues Mol Biol. 2022;44(11):5756-5767. https://doi.org/10.3390/cimb44110390
  31. Hornyák L, Dobos N, Koncz G, Karányi Z, Páll D, Szabó Z, Halmos G, Székvölgyi L. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol. 2018;9:151.  https://doi.org/10.3389/fimmu.2018.00151
  32. Isla Larrain MT, Rabassa ME, Lacunza E, Barbera A, Cretón A, Segal-Eiras A, Croce MV. IDO is highly expressed in breast cancer and breast cancer-derived circulating microvesicles and associated to aggressive types of tumors by in silico analysis. Tumour Biol. 2014;35(7):6511-6519. https://doi.org/10.1007/s13277-014-1859-3
  33. Carter JM, Chumsri S, Hinerfeld DA, Ma Y, Wang X, Zahrieh D, Hillman DW, Tenner KS, Kachergus JM, Brauer HA, et al. Distinct spatial immune microlandscapes are independently associated with outcomes in triple-negative breast cancer. Nat Commun. 2023;14(1):2215. https://doi.org/10.1038/s41467-023-37806-0
  34. Wei JL, Wu SY, Yang YS, Xiao Y, Jin X, Xu XE, Hu X, Li DQ, Jiang YZ, Shao ZM. GCH1 induces immunosuppression through metabolic reprogramming and IDO1 upregulation in triple-negative breast cancer. J Immunother Cancer. 2021;9(7):e002383. https://doi.org/10.1136/jitc-2021-002383
  35. Pan P, Ji D, Li Z, Meng X. Design and synthesis of doublecortin-like kinase 1 inhibitors and their bioactivity evaluation. J Enzyme Inhib Med Chem. 2024;39(1):2287990. https://doi.org/10.1080/14756366.2023.2287990
  36. Shu T, Tseng HC, Sapir T, Stern P, Zhou Y, Sanada K, Fischer A, Coquelle FM, Reiner O, Tsai LH. Doublecortin-like kinase controls neurogenesis by regulating mitotic spindles and M phase progression. Neuron. 2006;49(1):25-39.  https://doi.org/10.1016/j.neuron.2005.10.039
  37. Nagamine T, Nomada S, Onouchi T, Kameshita I, Sueyoshi N. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2. Biochem Biophys Res Commun. 2014;446(1):73-78.  https://doi.org/10.1016/j.bbrc.2014.02.075
  38. Galvan L, Francelle L, Gaillard MC, de Longprez L, Carrillo-de Sauvage MA, Liot G, Cambon K, Stimmer L, Luccantoni S, Flament J, et al. The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin. Brain. 2018;141(5):1434-1454. https://doi.org/10.1093/brain/awy057
  39. Liu NQ, Ter Huurne M, Nguyen LN, Peng T, Wang SY, Studd JB, Joshi O, Ongen H, Bramsen JB, Yan J, et al. The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression. Nat Commun. 2017;8:14418. https://doi.org/10.1038/ncomms14418
  40. Cheng J, Tang YC, Dong Y, Qin RL, Dong ZQ. Doublecortin-like kinase 3 (DCLK3) is associated with bad clinical outcome of patients with gastric cancer and regulates the ferroptosis and mitochondria function in vitro and in vivo. Ir J Med Sci. 2024; 193(1):35-43.  https://doi.org/10.1007/s11845-023-03430-6
  41. Venkat A, Watterson G, Byrne DP, O’Boyle B, Shrestha S, Gravel N, Fairweather EE, Daly LA, Bunn C, Yeung W, et al. Mechanistic and evolutionary insights into isoform-specific ‘supercharging’ in DCLK family kinases. Elife. 2023;12:RP87958. https://doi.org/10.7554/eLife.87958
  42. Barrow TM, Wong Doo N, Milne RL, Giles GG, Willmore E, Strathdee G, Byun HM. Analysis of retrotransposon subfamily DNA methylation reveals novel early epigenetic changes in chronic lymphocytic leukemia. Haematologica. 2021;106(1):98-110.  https://doi.org/10.3324/haematol.2019.228478
  43. Hu L, Zhang Y, Guo L, Zhong H, Xie L, Zhou J, Liao C, Yao H, Fang J, Liu H, et al. Kinome-wide siRNA screen identifies a DCLK2-TBK1 oncogenic signaling axis in clear cell renal cell carcinoma. Mol Cell. 2024;84(4):776-790.e5.  https://doi.org/10.1016/j.molcel.2023.12.010
  44. He Y, Dai X, Li S, Zhang X, Gong K, Song K, Shi J. Doublecortin-like kinase 2 promotes breast cancer cell invasion and metastasis. Clin Transl Oncol. 2023;25(4):1102-1113. https://doi.org/10.1007/s12094-022-03018-z
  45. Giannakis M, Stappenbeck TS, Mills JC, Leip DG, Lovett M, Clifton SW, Ippolito JE, Glasscock JI, Arumugam M, Brent MR, et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem. 2006;281(16):11292-11300. https://doi.org/10.1074/jbc.M512118200
  46. Westphalen CB, Quante M, Wang TC. Functional implication of Dclk1 and Dclk1-expressing cells in cancer. Small GTPases. 2017;8(3):164-171.  https://doi.org/10.1080/21541248.2016.1208792
  47. Gzil A, Szylberg L, Jaworski D, Dominiak J, Zarębska I, Grzanka D. The essential role of DCLK1 in pathogenesis, diagnostic procedures and prognostic stratification of colorectal cancer. Anticancer Res. 2019;39(6):2689-2697. https://doi.org/10.21873/anticanres.13394
  48. Kalantari E, Razmi M, Tajik F, Asadi-Lari M, Ghods R, Madjd Z. Oncogenic functions and clinical significances of DCLK1 isoforms in colorectal cancer: a systematic review and meta-analysis. Cancer Cell Int. 2022;22(1):217.  https://doi.org/10.1186/s12935-022-02632-9
  49. Kalantari E, Ghods R, Saeednejad Zanjani L, Rahimi M, Eini L, Razmi M, Asadi-Lari M, Madjd Z. Cytoplasmic expression of DCLK1-S, a novel DCLK1 isoform, is associated with tumor aggressiveness and worse disease-specific survival in colorectal cancer. Cancer Biomark. 2022;33(3):277-289.  https://doi.org/10.3233/CBM-210330
  50. Yang WQ, Zhao WJ, Zhu LL, Xu SJ, Zhang XL, Liang Y, Ding XF, Kiselyov A, Chen G. XMD-17-51 inhibits DCLK1 kinase and prevents lung cancer progression. Front Pharmacol. 2021;12:603453. https://doi.org/10.3389/fphar.2021.603453
  51. Panneerselvam J, Mohandoss P, Patel R, Gillan H, Li M, Kumar K, Nguyen D, Weygant N, Qu D, Pitts K, et al. DCLK1 regulates tumor stemness and cisplatin resistance in non-small cell lung cancer via ABCD-member-4. Mol Ther Oncolytics. 2020;18:24-36.  https://doi.org/10.1016/j.omto.2020.05.012
  52. Yan R, Huang X, Liu H, Xiao Z, Liu J, An G, Ge Y. DCLK1 drives EGFR-TKI-acquired resistance in lung adenocarcinoma by remodeling the epithelial-mesenchymal transition status. Biomedicines. 2023;11(5):1490. https://doi.org/10.3390/biomedicines11051490
  53. Wu X, Qu D, Weygant N, Peng J, Houchen CW. Cancer stem cell marker DCLK1 correlates with tumorigenic immune infiltrates in the colon and gastric adenocarcinoma microenvironments. Cancers (Basel). 2020;12(2):274.  https://doi.org/10.3390/cancers12020274
  54. Liu YH, Tsang JY, Ni YB, Hlaing T, Chan SK, Chan KF, Ko CW, Mujtaba SS, Tse GM. Doublecortin-like kinase 1 expression associates with breast cancer with neuroendocrine differentiation. Oncotarget. 2016;7(2):1464-1476. https://doi.org/10.18632/oncotarget.6386
  55. Lv Y, Song G, Wang R, Di L, Wang J. Doublecortin-like kinase 1 is a novel biomarker for prognosis and regulates growth and metastasis in basal-like breast cancer. Biomed Pharmacother. 2017;88: 1198-1205. https://doi.org/10.1016/j.biopha.2017.01.082
  56. Wang YL, Li Y, Ma YG, Wu WY. DCLK1 promotes malignant progression of breast cancer by regulating Wnt/β-Catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(21):9489-9498. https://doi.org/10.26355/eurrev_201911_19443
  57. Liu H, Wen T, Zhou Y, Fan X, Du T, Gao T, Li L, Liu J, Yang L, Yao J, et al. DCLK1 plays a metastatic-promoting role in human breast cancer cells. Biomed Res Int. 2019;2019:1061979. https://doi.org/10.1155/2019/1061979
  58. Liu H, Yan R, Xiao Z, Huang X, Yao J, Liu J, An G, Ge Y. Targeting DCLK1 attenuates tumor stemness and evokes antitumor immunity in triple-negative breast cancer by inhibiting IL-6/STAT3 signaling. Breast Cancer Res. 2023;25(1):43.  https://doi.org/10.1186/s13058-023-01642-3
  59. Elian FA, Yan E, Walter MA. FOXC1, the new player in the cancer sandbox. Oncotarget. 2017;9(8):8165-8178. https://doi.org/10.18632/oncotarget.22742
  60. Gilding LN, Somervaille TCP. The diverse consequences of FOXC1 deregulation in cancer. Cancers (Basel). 2019;11(2):184.  https://doi.org/10.3390/cancers11020184
  61. Han B, Bhowmick N, Qu Y, Chung S, Giuliano AE, Cui X. FOXC1: an emerging marker and therapeutic target for cancer. Oncogene. 2017;36(28):3957-3963. https://doi.org/10.1038/onc.2017.48
  62. Zhu H. Forkhead box transcription factors in embryonic heart development and congenital heart disease. Life Sci. 2016;144:194-201.  https://doi.org/10.1016/j.lfs.2015.12.001
  63. Wang J, Li W, Zheng X, Pang X, Du G. Research progress on the forkhead box C1. Oncotarget. 2017;9(15):12471-12478. https://doi.org/10.18632/oncotarget.22527
  64. Li M, Lv H, Zhong S, Zhou S, Lu H, Yang W. FOXC1. Arch Pathol Lab Med. 2022;146(8):994-1003. https://doi.org/10.5858/arpa.2021-0039-OA
  65. Ray PS, Wang J, Qu Y, Sim MS, Shamonki J, Bagaria SP, Ye X, Liu B, Elashoff D, Hoon DS, et al. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res. 2010;70(10):3870-3876. https://doi.org/10.1158/0008-5472.CAN-09-4120
  66. Jin Y, Han B, Chen J, Wiedemeyer R, Orsulic S, Bose S, Zhang X, Karlan BY, Giuliano AE, Cui Y, et al. FOXC1 is a critical mediator of EGFR function in human basal-like breast cancer. Ann Surg Oncol. 2014;21Suppl. 4(04):S758-S766. https://doi.org/10.1245/s10434-014-3980-3
  67. Jensen TW, Ray T, Wang J, Li X, Naritoku WY, Han B, Bellafiore F, Bagaria SP, Qu A, Cui X, et al. Diagnosis of basal-like breast cancer using a FOXC1-based assay. J Natl Cancer Inst. 2015;107(8):djv148. https://doi.org/10.1093/jnci/djv148
  68. Ray PS, Bagaria SP, Wang J, Shamonki JM, Ye X, Sim MS, Steen S, Qu Y, Cui X, Giuliano AE. Basal-like breast cancer defined by FOXC1 expression offers superior prognostic value: a retrospective immunohistochemical study. Ann Surg Oncol. 2011;18(13): 3839-3847. https://doi.org/10.1245/s10434-011-1657-8
  69. Zhao S, Ma D, Xiao Y, Li XM, Ma JL, Zhang H, Xu XL, Lv H, Jiang WH, Yang WT, et al. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance. Oncologist. 2020;25(10):e1481-e1491. https://doi.org/10.1634/theoncologist.2019-0982
  70. Kim S, Moon BI, Lim W, Park S, Cho MS, Sung SH. Feasibility of classification of triple negative breast cancer by immunohistochemical surrogate markers. Clin Breast Cancer. 2018;18(5):e1123-e1132. https://doi.org/10.1016/j.clbc.2018.03.012

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.