The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Rafaelyan A.A.

Kirov Military Medical Academy

Alekseev D.E.

Kirov Military Medical Academy

Martynov B.V.

Kirov Military Medical Academy

Kholyavin A.I.

Kirov Military Medical Academy;
Bekhtereva Institute of Human Brain

Papayan G.V.

Pavlov First St. Petersburg State Medical University;
Almazov National Medical Research Center

Lytkin M.V.

Kirov Military Medical Academy

Svistov D.V.

Kirov Military Medical Academy

Zheleznyak I.S.

Kirov Military Medical Academy

Imyanitov E.N.

Petrov National Medical Research Oncology Center

Stereotactic photodynamic therapy for recurrent glioblastoma. Case report and literature review

Authors:

Rafaelyan A.A., Alekseev D.E., Martynov B.V., Kholyavin A.I., Papayan G.V., Lytkin M.V., Svistov D.V., Zheleznyak I.S., Imyanitov E.N.

More about the authors

Journal: Burdenko's Journal of Neurosurgery. 2020;84(5): 81‑88

Read: 5264 times


To cite this article:

Rafaelyan AA, Alekseev DE, Martynov BV, et al. . Stereotactic photodynamic therapy for recurrent glioblastoma. Case report and literature review. Burdenko's Journal of Neurosurgery. 2020;84(5):81‑88. (In Russ., In Engl.)
https://doi.org/10.17116/neiro20208405181

Recommended articles:
Aortic homo­graft in redo aortic root surgery. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(6):686-690
Redo frozen elephant trunk procedures after surgical treatment of acute aortic dissection type I. Russian Journal of Cardiology and Cardiovascular Surgery. 2025;(5):503-510
Redo asce­nding aortic surgery: outcomes and risk factors of complications. Russian Journal of Cardiology and Cardiovascular Surgery. 2025;(5):511-519

References:

  1. Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5‐aminolevulinic acid induced protoporphyrin IX. Lasers in Surgery and Medicine. 2007;39(5):386-393.  https://doi.org/10.1002/lsm.20507
  2. Kruchko C, Ostrom QT, Gittleman H, Barnholtz-Sloan JS. The CBTRUS story: providing accurate population-based statistics on brain and other central nervous system tumors for everyone. Neuro-Oncology. 2018;20(3):295-298.  https://doi.org/10.1093/neuonc/noy006
  3. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009;65(3):463-470.  https://doi.org/10.1227/01.neu.0000349763.42238.e9
  4. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn M, Belanger K, Brandes A, Marosi C, Bogdahn U, Curschmann J. Janzer R, Ludwin S, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff R. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine. 2005;352(10):987-996.  https://doi.org/10.1016/j.canrad.2005.05.001
  5. Sughrue ME, Sheean T, Bonney PA, Maurer AJ, Teo C. Aggressive repeat surgery for focally recurrent primary glioblastoma: outcomes and theoretical framework. Neurosurgical Focus. 2015;38(3):E11.  https://doi.org/10.3171/2014.12.focus14726
  6. Clarke JL, Ennis MM, Yung WA, Chang SM, Wen PY, Cloughesy TF, DeAngelis LM, Robins HI, Lieberman FS, Fine HA, Abrey L, Gilbert MR, Mehta M, Kuhn JG, Aldape KD, Lamborn KR, Prados MD. Is surgery at progression a prognostic marker for improved 6-month progression-free survival or overall survival for patients with recurrent glioblastoma? Neuro-Oncology. 2011;13(10)1118-1124. https://doi.org/10.1093/neuonc/nor110
  7. Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Molecular Medicine. 2014;6(11):1359-1370. https://doi.org/10.15252/emmm.201302627
  8. Brandes AA, Bartolotti M, Franceschi E. Second surgery for recurrent glioblastoma: advantages and pitfalls. Expert Review of Anticancer Therapy. 2013;13(5):583-587.  https://doi.org/10.1586/era.13.32
  9. Kamath AA, Friedman DD, Akbari SHA, Kim AH, Tao Y, Luo J, Leuthardt EC. Glioblastoma treated with magnetic resonance imaging-guided laser interstitial thermal therapy: safety, efficacy, and outcomes. Neurosurgery. 2019;84(4):836-843.  https://doi.org/10.1093/neuros/nyy375
  10. Martynov BV, Kholyavin AI, Nizkovolos VB, Parfenov VE, Trufanov GE, Svistov DV. Stereotactic cryodestruction of gliomas. Progress in Neurological Surgery. 2018;32:27-38.  https://doi.org/10.1159/000469677
  11. Martynov BV, Kholyavin AI, Nizkovolos VB. Methods of stereotactic ablation of tumors located in eloquent areas of the brain. Stereotactic and Functional Neurosurgery. 2017;95(Suppl 1):404. 
  12. Koga H, Mori K, Tokunaga Y. Interstitial radiofrequency hyperthermia for brain tumors — preliminary laboratory studies and clinical application. Neurologia Medico-Chirurgica. 1993;33(5):290-294.  https://doi.org/10.2176/nmc.33.290
  13. Titsworth WL, Murad GJ, Hoh BL, Rahman M. Fighting fire with fire: the revival of thermotherapy for gliomas. Anticancer Research. 2014;34(2):565-574. 
  14. Alkins RD, Mainprize TG. High-Intensity Focused Ultrasound Ablation Therapy of Gliomas. Progress in Neurological Surgery. 2018;32:39-47.  https://doi.org/10.1159/000469678
  15. Loschenov VB, Konov VI, Prokhorov AM. Photodynamic therapy and fluorescence diagnostics. Laser Physics. 2000;10(6):1188-1207.
  16. Akimoto J. Photodynamic therapy for malignant brain tumors. Neurologia Medico-Chirurgica. 2016;56(4):151-157.  https://doi.org/10.2176/nmc.ra.2015-0296
  17. Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Raj JJ, Bozec D, Busch TM, Hadjipanayis CG. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. Journal of Neuro-Oncology. 2019;141(3):595-607.  https://doi.org/10.1007/s11060-019-03103-4
  18. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one — photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy. 2004;1(4):279-293.  https://doi.org/10.1016/s1572-1000(05)00007-4
  19. Kessel D. Apoptosis, paraptosis and autophagy: death and survival pathways associated with photodynamic therapy. Photochemistry and Photobiology. 2019;95(1):119-125.  https://doi.org/10.1111/php.12952
  20. Hirschberg H, Berg K, Peng Q. Photodynamic therapy mediated immune therapy of brain tumors. Neuroimmunology and Neuroinflammation. 2018;5:27.  https://doi.org/10.20517/2347-8659.2018.31
  21. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience. 2016;19(1):20-27.  https://doi.org/10.1038/nn.4185
  22. Zhu Z, Scalfi-Happ C, Ryabova A, Gräfe S, Wiehe A, Peter RU, Loschenov V, Steiner R, Wittig R. Photodynamic activity of Temoporfin nanoparticles induces a shift to the M1-like phenotype in M2-polarized macrophages. Journal of Photochemistry and Photobiology. B: Biology. 2018;185:215-222.  https://doi.org/10.1016/j.jphotobiol.2018.06.015
  23. Thon N, Tonn JC, Kreth FW. The surgical perspective in precision treatment of diffuse gliomas. OncoTargets and Therapy. 2019;12:1497-1508. https://doi.org/10.2147/ott.s174316
  24. Dupont C, Vermandel M, Leroy HA, Quidet M, Lecomte F, Delhem N, Mordon S, Reyns N. Intraoperative photoDYnamic Therapy for GliOblastomas (INDYGO): study protocol for a phase I clinical trial. Neurosurgery. 2019;84(6):E414-E419. https://doi.org/10.1093/neuros/nyy324
  25. Cramer SW, Chen CC. Photodynamic therapy for the treatment of glioblastoma. Frontiers in Surgery. 2019;6:81.  https://doi.org/10.3389/fsurg.2019.00081
  26. Kaneko S, Fujimoto S, Yamaguchi H, Yamauchi T, Yoshimoto T, Tokuda K. Photodynamic therapy of malignant gliomas Progress in Neurological Surgery. 2018;32:1-13.  https://doi.org/10.1159/000469675
  27. Stylli SS, Kaye AH. Photodynamic therapy of cerebral glioma — a review. Part I — a biological basis. Journal of Clinical Neuroscience. 2006;13(6):615-625.  https://doi.org/10.1016/j.jocn.2005.11.014
  28. Eljamel S. Photodynamic applications in brain tumors: a comprehensive review of the literature. Photodiagnosis and Photodynamic Therapy. 2010;7(2):76-85.  https://doi.org/10.1016/j.pdpdt.2010.02.002
  29. Bechet D, Mordon SR, Guillemin F, Barberi-Heyob MA. Photodynamic therapy of malignant brain tumours: a complementary approach to conventional therapies. Cancer Treatment Reviews. 2014;40(2):229-241.  https://doi.org/10.1016/j.ctrv.2012.07.004
  30. Quirk BJ, Brandal G, Donlon S, Vera JC, Mang TS, Foy AB, Lew SM, Girotti AW, Jogal S, LaViolette PS, Connelly JM, Whelan HT. Photodynamic therapy (PDT) for malignant brain tumors — where do we stand? Photodiagnosis and Photodynamic Therapy. 2015;12(3):530-544.  https://doi.org/10.1016/j.pdpdt.2015.04.009
  31. Pogue BW, Gibbs-Strauss SL, Valdés PA, Samkoe KS, Roberts DW, Paulsen KD. Review of neurosurgical fluorescence imaging methodologies. IEEE Journal of Selected Topics in Quantum Electronics. 2010;16(3):493-505.  https://doi.org/10.1109/jstqe.2010.2084074
  32. Goryainov SA, Potapov AA, Pitskhelauri DI, Kobyakov GL, Okhlopkov VA, Gavrilov AG, Shurkhai VA, Zhukov VYu, Shishkina LV, Loshchenov VB, Savelyeva TA, Kuzmin SG, Chumakov AP. Intraoperative fluorescence diagnostics upon recurrent operations for brain gliomas. Zhurnal voprosy neirokhirurgii imeni N.N. Burdenko. 2014;78(2):22-31. (In Russ.)
  33. Valdés PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, Tosteson T, Hartov A, Ji S, Erkmen K, Simmons NE, Paulsen KD, Roberts DW. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. Journal of Neurosurgery. 2011;115(1):11-17.  https://doi.org/10.3171/2011.2.jns101451
  34. Valdés PA, Kim A, Brantsch M, Niu C, Moses ZB, Tosteson TD, Wilson BC, Paulsen KD, Roberts DW, Harris BT. δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro-Oncology. 2011;13(8):846-856.  https://doi.org/10.1093/neuonc/nor086
  35. Papayan GV, Martynov BV, Kholyavin AI, Nizkovolos VB, Svistov DV, Petrishchev NN, Chirko IN. Stereotactic fluorescence biospectroscopy in the diagnosis of brain glial neoplasms. Aktual’nye problemy lazernoj meditsiny. Sbornik nauchnykh trudov. NN Petrishchev, ed. SPb; 2016:139-151. (In Russ.)
  36. Piquer J, Llácer JL, Rovira V, Riesgo P, Rodriguez R, Cremades A. Fluorescence-guided surgery and biopsy in gliomas with an exoscope system. BioMed Research International. 2014;207974. https://doi.org/10.1155/2014/207974
  37. Goraynov S, Chernyshov K, Okhlopkov VA, Golbin DA, Svistov DV, Martynov BV, Kim AV, Byvaltsev VA, Pavlova GV, Batalov A, Konovalov NA, Zelenkov PV, Loschenov VB, Potapov AA. Fluorescence diagnosis in neurooncology: retrospective analysis of 653 cases. Frontiers in Oncology. 2019;9:830.  https://doi.org/10.3389/fonc.2019.00830
  38. Mathon B, Amelot A, Mokhtari K, Bielle F. Increasing the diagnostic yield of stereotactic brain biopsy using intraoperative histological smear. Clinical Neurology and Neurosurgery. 2019;186:105544. https://doi.org/10.1016/j.clineuro.2019.105544
  39. Tilgner J, Herr M, Ostertag C, Volk B. Validation of intraoperative diagnoses using smear preparations from stereotactic brain biopsies: intraoperative versus final diagnosis — influence of clinical factors. Neurosurgery. 2005;56(2):257-265.  https://doi.org/10.1227/01.neu.0000148899.39020.87
  40. Sawin PD, Hitchon PW, Follett KA, Torner JC. Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases. Surgical Neurology. 1998;49(6):640-649.  https://doi.org/10.1016/s0090-3019(97)00435-7
  41. Olyushin VE, Rostovtsev DM, Papayan GV, Filatov MV, Fadeeva TN, Burnin KS, Kalmens VYa, Melchenko SA. New technologies (photodynamic therapy and specific antitumor immunotherapy) in treatment of patients with malignant supratentorial astrocytic tumors. Evaluation of remote results. Translyatsionnaya meditsina. 2015;2-3:103-112.  https://doi.org/10.18705/2311-4495-2015-0-2-3-103-112

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.