The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Fursova A.Zh.

Novosibirsk State Regional Clinical Hospital;
Novosibirsk State Medical University

Derbeneva A.S.

Novosibirsk State Regional Clinical Hospital;
Novosibirsk State Medical University

Vasilyeva M.A.

Novosibirsk State Regional Clinical Hospital

Nikulich I.F.

Novosibirsk State Regional Clinical Hospital;
Novosibirsk State Medical University

Tarasov M.S.

Novosibirsk State Regional Clinical Hospital;
Novosibirsk State Medical University

Gamza Yu.A.

Novosibirsk State Medical University;
Private Healthcare institution Clinical Hospital «RZD-Medicine» Novosibirsk

Chubar N.V.

Novosibirsk State Regional Clinical Hospital

Gusarevitch O.G.

Novosibirsk State Medical University;
Novosibirsk State Region Hospital

Dmitrieva E.I.

Novosibirsk State Medical University

Kozhevnikova O.S.

Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Kolosova N.G.

All-Russian public organization «Pediatric Respiratory Society»;
N.F. Filatov Clinical Institute of Children’s Health of the I.M. Sechenov First Moscow State Medical University (Sechenov University)

Elizarova A.A.

Novosibirsk State Medical University

New findings on pathogenetic mechanisms in the development of age-related macular degeneration

Authors:

Fursova A.Zh., Derbeneva A.S., Vasilyeva M.A., Nikulich I.F., Tarasov M.S., Gamza Yu.A., Chubar N.V., Gusarevitch O.G., Dmitrieva E.I., Kozhevnikova O.S., Kolosova N.G., Elizarova A.A.

More about the authors

Journal: Russian Annals of Ophthalmology. 2022;138(2): 120‑130

Read: 2900 times


To cite this article:

Fursova AZh, Derbeneva AS, Vasilyeva MA, et al. . New findings on pathogenetic mechanisms in the development of age-related macular degeneration. Russian Annals of Ophthalmology. 2022;138(2):120‑130. (In Russ.)
https://doi.org/10.17116/oftalma2022138021120

Recommended articles:
Neuroprotective therapy for age-related macu­lar dege­neration. Russian Annals of Ophthalmology. 2024;(6):152-158

References:

  1. Efendieva MKh, Budzinskaia MV, Kadyshev VV, Zinchenko RA, Savochkina OA, Pupysheva AD. Molecular and genetic aspects of age-related macular degeneration and glaucoma. (In Russian only). The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2019;135(3):121-127. (In Russ., In Engl.) https://doi.org/10.17116/oftalma2019135031121
  2. Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33(4):295-317.  https://doi.org/10.1016/j.mam.2012.04.005
  3. Kauppinen A, Paterno JJ, Blasiak J, et al. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci. 2016;73(9):1765-1786. https://doi.org/10.1007/s00018-016-2147-8
  4. Zaytseva OV, Neroeva NV, Okhotsimskaya TD, et al. Anti-VEGF therapy for neovascular age-related macular degeneration: causes of incomplete response. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2021; 137(5):152-159. (In Russ.). https://doi.org/10.17116/oftalma2021137051152
  5. Wakatsuki Y, Shinojima A, Kawamura A, et al. Correlation of Aging and Segmental Choroidal Thickness Measurement using Swept Source Optical Coherence Tomography in Healthy Eyes. PLoS One. 2015;10(12):e0144156. https://doi.org/10.1371/journal.pone.0144156
  6. Tchkonia T, Zhu Y, van Deursen J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013; 123(3):966-972.  https://doi.org/10.1172/JCI64098
  7. Telegina DV, Kozhevnikova OS, Kolosova NG. Alterations of retinal neurotrophic supply with age and during development of age-related macular degeneration. Pathogenesis = Patogenez. 2019;17(4):14-20. (In Russ.) https://doi.org/10.25557/2310-0435.2019.04.14-20
  8. Boyer NP, Higbee D, Currin MB, et al. Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. J Biol Chem. 2012; 287(26):22276-22286. https://doi.org/10.1074/jbc.M111.329235
  9. Liu J, Itagaki Y, Ben-Shabat S, et al. The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem. 2000;275(38):29354-29360. https://doi.org/10.1074/jbc.M910191199
  10. Miceli MV, Liles MR, Newsome DA. Evaluation of oxidative processes in human pigment epithelial cells associated with retinal outer segment phagocytosis. Exp Cell Res. 1994;214(1):242-249.  https://doi.org/10.1006/excr.1994.1254
  11. Minasyan L, Sreekumar PG, Hinton DR, et al. Protective Mechanisms of the Mitochondrial-Derived Peptide Humanin in Oxidative and Endoplasmic Reticulum Stress in RPE Cells. Oxid Med Cell Longev. 2017;2017:1675230. https://doi.org/10.1155/2017/1675230
  12. Blasiak J, Pawlowska E, Szczepanska J, et al. Interplay between Autophagy and the Ubiquitin-Proteasome System and Its Role in the Pathogenesis of Age-Related Macular Degeneration. Int J Mol Sci. 2019;20(1):210.  https://doi.org/10.3390/ijms20010210
  13. Banevicius M, Gedvilaite G, Vilkeviciute A, et al. Association of relative leukocyte telomere length and genetic variants in telomere-related genes (TERT, TERT-CLPTM1, TRF1, TNKS2, TRF2) with atrophic age-related macular degeneration. Ophthalmic Genet. 2021;42(2):189-194.  https://doi.org/10.1080/13816810.2021.1881976
  14. Weng X, Zhang H, Kan M, et al. Leukocyte telomere length is associated with advanced age-related macular degeneration in the Han Chinese population. Exp Gerontol. 2015;69:36-40.  https://doi.org/10.1016/j.exger.2015.06.004
  15. Wang J, Feng Y, Han P, et al. Photosensitization of A2E triggers telomere dysfunction and accelerates retinal pigment epithelium senescence. Cell Death Dis. 2018;9(2):178.  https://doi.org/10.1038/s41419-017-0200-7
  16. Rozing MP, Durhuus JA, Krogh Nielsen M, et al. Age-related macular degeneration: A two-level model hypothesis. Prog Retin Eye Res. 2020;76: 100825. https://doi.org/10.1016/j.preteyeres.2019.100825
  17. Huang J, Xie Y, Sun X, et al. DAMPs, ageing, and cancer: The ‘DAMP Hypothesis’. Ageing Res Rev. 2015;24(Pt A):3-16.  https://doi.org/10.1016/j.arr.2014.10.004
  18. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240-273, Table of Contents. https://doi.org/10.1128/CMR. 00046-08
  19. Handa JT, Bowes Rickman C, Dick AD, et al. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun. 2019;10(1):3347. https://doi.org/10.1038/s41467-019-11262-1
  20. Chen M, Glenn JV, Dasari S, et al. RAGE regulates immune cell infiltration and angiogenesis in choroidal neovascularization. PLoS One. 2014;9(2): e89548. https://doi.org/10.1371/journal.pone.0089548
  21. Hageman GS, Anderson DH, Johnson LV, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA. 2005; 102(20):7227-7232. https://doi.org/10.1073/pnas.0501536102
  22. Geerlings MJ, de Jong EK, den Hollander AI. The complement system in age-related macular degeneration: A review of rare genetic variants and implications for personalized treatment. Mol Immunol. 2017;84:65-76.  https://doi.org/10.1016/j. molimm.2016.11.016
  23. Mullins RF, Schoo DP, Sohn EH, et al. The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning. Am J Pathol. 2014;184(11):3142-3153. https://doi.org/10.1016/j.ajpath.2014.07.017
  24. Lynch AM, Mandava N, Patnaik JL, et al. Systemic activation of the complement system in patients with advanced age-related macular degeneration. Eur J Ophthalmol. 2020;30(5):1061-1068. https://doi.org/10.1177/1120672119857896
  25. Shevchenko AV, Prokof’ev VF, Konenkov VI, et al. Cytokine gene polymorphisms in patients with age-related macular degeneration. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2016;132(2):8-13. (In Russ.). https://doi.org/10.17116/oftalma201613228-13
  26. Cao S, Ko A, Partanen M, Pakzad-Vaezi K, et al. Relationship between systemic cytokines and complement factor H Y402H polymorphism in patients with dry age-related macular degeneration. Am J Ophthalmol. 2013;156(6): 1176-1183. https://doi.org/10.1016/j.ajo.2013.08.003
  27. Espinosa-Heidmann DG, Suner IJ, Hernandez EP, et al. Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44(8):3586-3592. https://doi.org/10.1167/iovs.03-0038
  28. Zhou J, He S, Zhang N, et al. Neutrophils compromise retinal pigment epithelial barrier integrity. J Biomed Biotechnol. 2010;2010:289360. https://doi.org/10.1155/2010/289360
  29. Zhao Z, Liang Y, Liu Y, et al. Choroidal γδ T cells in protection against retinal pigment epithelium and retinal injury. FASEB J. 2017;31(11):4903-4916. https://doi.org/10.1096/fj.201700533R
  30. Kim J, Lee YJ, Won JY. Molecular Mechanisms of Retinal Pigment Epithelium Dysfunction in Age-Related Macular Degeneration. Int J Mol Sci. 2021;22(22):12298. https://doi.org/10.3390/ijms222212298
  31. Ferrara N, Mass RD, Campa C, Kim R. Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med. 2007;58:491-504.  https://doi.org/10.1146/annurev.med.58.061705.145635
  32. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-1264. https://doi.org/10.1016/j.cell.2019.01.021
  33. Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal. 2009;2(59):re1.  https://doi.org/10.1126/scisignal.259re1
  34. Klettner A, Kaya L, Flach J, et al. Basal and apical regulation of VEGF-A and placenta growth factor in the RPE/choroid and primary RPE. Mol Vis. 2015;21:736-748. 
  35. Nash AD, Baca M, Wright C, Scotney PD. The biology of vascular endothelial growth factor-B (VEGF-B). Pulm Pharmacol Ther. 2006;19(1):61-9.  https://doi.org/10.1016/j.pupt.2005.02.007
  36. Zhong X, Huang H, Shen J, et al. Vascular endothelial growth factor-B gene transfer exacerbates retinal and choroidal neovascularization and vasopermeability without promoting inflammation. Mol Vis. 2011;17:492-507. 
  37. Zhang F, Tang Z, Hou X, et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl AcadSci USA. 2009;106(15):6152-6157. https://doi.org/10.1073/pnas.081306110
  38. Fong GH, Rossant J, Gertsenstein M, et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376(6535):66-70.  https://doi.org/10.1038/376066a0
  39. Dugel PU, Boyer DS, Antoszyk AN, et al. Phase 1 Study of OPT-302 Inhibition of Vascular Endothelial Growth Factors C and D for Neovascular Age-Related Macular Degeneration. Ophthalmol Retina. 2020;4(3):250-263.  https://doi.org/10.1016/j.oret.2019.10.008
  40. Cunningham F, Van Bergen T, Canning P, et al. The Placental Growth Factor Pathway and Its Potential Role in Macular Degenerative Disease. Curr Eye Res. 2019;44(8):813-822.  https://doi.org/10.1080/02713683.2019.161419
  41. De Falco S. The discovery of placenta growth factor and its biological activity. Exp Mol Med. 2012;44(1):1-9.  https://doi.org/10.3858/emm.2012.44.1.025
  42. Patel P, Sheth V. New and Innovative Treatments for Neovascular Age-Related Macular Degeneration (nAMD). J Clin Med. 2021;10(11):2436. https://doi.org/10.3390/jcm10112436
  43. Camby I, Le Mercier M, Lefranc F, Kiss R. Galectin-1: a small protein with major functions. Glycobiology. 2006;16(11):137R-157R. https://doi.org/10.1093/glycob/cwl025
  44. Kanda A, Noda K, Saito W, Ishida S. Aflibercept Traps Galectin-1, an Angiogenic Factor Associated with Diabetic Retinopathy. Sci Rep. 2015;5:17946. https://doi.org/10.1038/srep17946
  45. Hollborn M, Tenckhoff S, Seifert M, et al. Human retinal epithelium produces and responds to placenta growth factor. Graefes Arch Clin Exp Ophthalmol. 2006;244(6):732-741.  https://doi.org/10.1007/s00417-005-0154-9
  46. Rakic JM, Lambert V, Devy L, et al. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44(7):3186-3193. https://doi.org/10.1167/iovs.02-1092
  47. Motohashi R, Noma H, Yasuda K, et al. Dynamics of Inflammatory Factors in Aqueous Humor during Ranibizumab or Aflibercept Treatment for Age-Related Macular Degeneration. Ophthalmic Res. 2017;58(4):209-216.  https://doi.org/10.1159/000478705
  48. Pongsachareonnont P, Mak MYK, Hurst CP, Lam WC. Neovascular age-related macular degeneration: intraocular inflammatory cytokines in the poor responder to ranibizumab treatment. Clin Ophthalmol. 2018;12:1877-1885. https://doi.org/10.2147/OPTH.S171636
  49. Lee J, Park DY, Park DY, et al. Angiopoietin-1 suppresses choroidal neovascularization and vascular leakage. Invest Ophthalmol Vis Sci. 2014;55(4): 2191-2199. https://doi.org/10.1167/iovs.14-13897
  50. Hussain RM, Neiweem AE, Kansara V, et al. Tie-2/Angiopoietin pathway modulation as a therapeutic strategy for retinal disease. Expert Opin Investig Drugs. 2019;28(10):861-869.  https://doi.org/10.1080/13543784.2019.1667333
  51. Frye M, Dierkes M, Küppers V, et al. Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin. J Exp Med. 2015;212(13):2267-2287. https://doi.org/10.1084/jem.20150718
  52. Campochiaro PA, Peters KG. Targeting Tie2 for Treatment of Diabetic Retinopathy and Diabetic Macular Edema. Curr Diab Rep. 2016;16(12):126.  https://doi.org/10.1007/s11892-016-0816-5

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.