Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Джон Дж.К.

Школа стоматологии и медицинских наук — Университет Чарльза Стерта

Фавалоро Э.Дж.

Школа стоматологии и медицинских наук — Университет Чарльза Стерта;
Сиднейские центры тромбоза и гемостаза — Институт клинической патологии и медицинских исследований (ICPMR) — Госпиталь Уэстмид

Остин С.

Лабораторная медицина Pathwest

Ислам З.

Школа вычислительной техники, математики и инженерии — Университет Чарльза Стерта

Сантакумар А.Б.

Школа стоматологии и медицинских наук — Университет Чарльза Стерта

От ошибок к совершенству: путь повышения качества преаналитического этапа в лабораторной диагностике. Литературный обзор

Авторы:

Джон Дж.К., Фавалоро Э.Дж., Остин С., Ислам З., Сантакумар А.Б.

Подробнее об авторах

Журнал: Лабораторная служба. 2025;14(3): 46‑63

Прочитано: 194 раза


Как цитировать:

Джон Дж.К., Фавалоро Э.Дж., Остин С., Ислам З., Сантакумар А.Б. От ошибок к совершенству: путь повышения качества преаналитического этапа в лабораторной диагностике. Литературный обзор. Лабораторная служба. 2025;14(3):46‑63.
John GK, Favaloro EJ, Austin S, Islam Z, Santhakumar AB. From errors to excellence: the pre-analytical journey to improved quality in diagnostics. A scoping review. Laboratory Service. 2025;14(3):46‑63. (In Russ.)
https://doi.org/10.17116/labs20251403146

Рекомендуем статьи по данной теме:
Воз­мож­нос­ти ис­кусствен­но­го ин­тел­лек­та при рас­се­ян­ном скле­ро­зе. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2025;(5):14-21

Литература / References:

  1. Lippi, G, Bassi, A, Brocco, G, Montagnana, M, Salvagno, GL, Guidi, GC. Preanalytic error tracking in a laboratory medicine department: results of a 1-year experience. Clin Chem. 2006;52:1442–3.  https://doi.org/10.1373/clinchem.2006.069534.
  2. Plebani, M. Quality indicators to detect pre-analytical errors in laboratory testing. Clin Biochem Rev. 2012;33:85. 
  3. Plebani, M, Sciacovelli, L, Aita, A, Pelloso, M, Chiozza, ML. Performance criteria and quality indicators for the pre-analytical phase. Clin Chem Lab Med. 2015;53:943–8.  https://doi.org/10.1515/cclm-2014–1124.
  4. Hutchens TT. NCCLS: objectives, organization, and activities. Pathologist. 1981 Nov;35(11):605-8. PMID: 10253256.
  5. US Congress. Clinical Laboratory Improvement Amendments of 1988, in Pub L No 100–578, 102 Stat 29031988. Government Printing Office. Search in Google Scholar.
  6. Guder, WG. History of the preanalytical phase: a personal view. Biochem Med (Zagreb). 2014;24:25–30.  https://doi.org/10.11613/bm.2014.005.
  7. West, J, Atherton, J, Costelloe, SJ, Pourmahram, G, Stretton, A, Cornes, M. Preanalytical errors in medical laboratories: a review of the available methodologies of data collection and analysis. Ann Clin Biochem. 2017;54:14–19.  https://doi.org/10.1177/0004563216669384.
  8. Kalra, J. Medical errors: impact on clinical laboratories and other critical areas. Clin Biochem. 2004;37:1052–62.  https://doi.org/10.1016/j.clinbiochem.2004.08.009.
  9. Plebani, M. Exploring the iceberg of errors in laboratory medicine. Clin Chim Acta. 2009;404:16–23.  https://doi.org/10.1016/j.cca.2009.03.022.
  10. Bonini, P, Plebani, M, Ceriotti, F, Rubboli, F. Errors in laboratory medicine. Clin Chem. 2002;48:691–8.  https://doi.org/10.1093/clinchem/48.5.691.SearchinGoogleScholar
  11. Lippi, G, Guidi, GC, Mattiuzzi, C, Plebani, M. Preanalytical variability: the dark side of the moon in laboratory testing. Clin Chem Lab Med. 2006;44:358–65.  https://doi.org/10.1515/cclm.2006.073.SearchinGoogleScholarPubMed
  12. Carraro, P, Plebani, M. Errors in a stat laboratory: types and frequencies 10 years later. Clin Chem. 2007;53:1338–42.  https://doi.org/10.1373/clinchem.2007.088344.
  13. Plebani, M. Towards a new paradigm in laboratory medicine: the five rights. Clin Chem Lab Med. 2016;54:1881–91.  https://doi.org/10.1515/cclm-2016–0848.
  14. Mrazek, C, Lippi, G, Keppel, MH, Felder, TK, Oberkofler, H, Haschke-Becher, E, et al.. Errors within the total laboratory testing process, from test selection to medical decision-making–A review of causes, consequences, surveillance and solutions. Biochem Med (Zagreb). 2020;30:215–33.  https://doi.org/10.11613/bm.2020.020502.
  15. Morias, C, Palmer, G, Santhakumar, A. Pre-analytical errors and patient outcomes in the total testing process. Aust J Med Sci 2018;39:14–27. 
  16. Morias, C, Palmer, G, Santhakumar, A. Pre-analytical errors and their prevention in an emergency department setting. Aust J Med. Sci 2023;44:46–61. 
  17. Gambino, SR. Met and unmet needs of the automated clinical laboratory. Trans N Y Acad Sci. 1970;32:816–20.  https://doi.org/10.1111/j.2164–0947.1970.tb02756.x.
  18. Andersen, O, Haugaard, S, Jørgensen, L, Sørensen, S, Nielsen, JO, Madsbad, S, et al. Preanalytical handling of samples for measurement of plasma lactate in HIV patients. Scand J Clin Lab Invest. 2003;63:449–54.  https://doi.org/10.1080/00365510310005128
  19. Ladenson, JH. Patients as their own controls: use of the computer to identify “laboratory error”. Clin Chem. 1975;21:1648–53.  https://doi.org/10.1093/clinchem/21.11.1648.
  20. Plebani, M, Laposata, M, Lundberg, GD. The brain-to-brain loop concept for laboratory testing 40 years after its introduction. Am J Clin Pathol. 2011;136:829–33.  https://doi.org/10.1309/ajcpr28hwhssdnon.
  21. Goldschmidt, H, Lent, R. From data to information: how to define the context? Chemometr Intell Lab Syst. 1995;28:181–92.  https://doi.org/10.1016/0169–7439(95)80049-f.
  22. Pansini, N, Di Serio, F, Tampoia, M. Total testing process: appropriateness in laboratory medicine. Clin Chim Acta. 2003;333:141–5.  https://doi.org/10.1016/s0009–8981(03)00178–5.
  23. Kouri, T, Siloaho, M, Pohjavaara, S, Koskinen, P, Malminiemi, O, Pohja-Nylander, P, et al.. Pre-analytical factors and measurement uncertainty. Scand J Clin Lab Invest. 2005;65:463–76.  https://doi.org/10.1080/00365510500208332.
  24. Leibach, EK, Russell, BL. A typology of evidence based practice research heuristics for clinical laboratory science curricula. Clin Lab Sci. 2010;23:46–50.  https://doi.org/10.29074/ascls.23.3_supplement.46.
  25. Plebani, M. Errors in clinical laboratories or errors in laboratory medicine? Clin Chem Lab Med. 2006;44:750–9.  https://doi.org/10.1515/cclm.2006.123.
  26. Lippi, G, Salvagno, GL, Adcock, D, Gelati, M, Guidi, G, Favaloro, E. Right or wrong sample received for coagulation testing? Tentative algorithms for detection of an incorrect type of sample. Int J Lab Hematol. 2010;32:132–8.  https://doi.org/10.1111/j.1751–553x.2009.01142.x.
  27. Green, SF. The cost of poor blood specimen quality and errors in preanalytical processes. Clin Biochem. 2013;46:1175–9.  https://doi.org/10.1016/j.clinbiochem.2013.06.001.
  28. Sciacovelli, L, Aita, A, Chiozza, ML. Harmonization of pre-analytical quality indicators. Biochem Med (Zagreb). 2014;24:105–13.  https://doi.org/10.11613/bm.2014.012.
  29. Magnette, A, Chatelain, M, Chatelain, B, Ten Cate, H, Mullier, F. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories. Thrombosis. 2016;14:1–14.  https://doi.org/10.1186/s12959-016-0123-z.
  30. Lippi, G, Cornes, MP, Grankvist, K, Nybo, M, Simundic, A-M. EFLM WG-Preanalytical phase opinion paper: local validation of blood collection tubes in clinical laboratories. Clin Chem Lab Med. 2016;54:755—60.  https://doi.org/10.1515/cclm-2015-1274.
  31. Hall, KK, Shoemaker-Hunt, S, Hoffman, L, Richard, S, Gall, E, Schoyer, E, et al.. Making healthcare safer III: a critical analysis of existing and emerging patient safety practices. Rockville, MD: Agency for Healthcare Research and Quality; 2020.
  32. Yeates, RL. An investigation in pre-analytical error in a medium sized pathology laboratory: frequency, origin, type, and a proposed intervention. James Cook University; 2016.
  33. Lippi, G, Betsou, F, Cadamuro, J, Cornes, M, Fleischhacker, M, Fruekilde, P, et al.. Preanalytical challenges–time for solutions. Clin Chem Lab Med. 2019;57:974–81.  https://doi.org/10.1515/cclm-2018-1334.
  34. Plebani, M, Aita, A, Sciacovelli, L. Patient safety in laboratory medicine. In: L Donaldson, editor. Textbook of patient safety and clinical risk management. Cham: Springer International Publishing; 2021:325–38  https://doi.org/10.1007/978-3-030-59403-9_24
  35. Cadamuro, J, Baird, G, Baumann, G, Bolenius, K, Cornes, M, Ibarz, M, et al.. Preanalytical quality improvement–an interdisciplinary journey. Clin Chem Lab Med. 2022;60:662–8.  https://doi.org/10.1515/cclm-2022-0117.
  36. Cadamuro, J. Disruption vs. evolution in laboratory medicine. Current challenges and possible strategies, making laboratories and the laboratory specialist profession fit for the future. Clin Chem Lab Med. 2023;61:558–66.  https://doi.org/10.1515/cclm-2022-0620.
  37. Milinković, N, Ignjatović, S, Šumarac, Z, Majkić-Singh, N. Uncertainty of measurement in laboratory medicine. J Med Biochem. 2018;37:279.  https://doi.org/10.2478/jomb-2018-0002.
  38. Coskun, A. Bias in laboratory medicine: the dark side of the moon. Ann Lab Med. 2024;44:6.  https://doi.org/10.3343/alm.2024.44.1.6.
  39. Garcia, LS. Quality management. In: Garcia, LS, et al.., editors. Clinical Laboratory Management. Newark, US: ASM Press; 2024:251–86  https://doi.org/10.1002/9781683673941.ch18
  40. Lippi, G, Mattiuzzi, C, Favaloro, EJ. Artificial intelligence in the pre-analytical phase: State-of-the art and future perspectives. J Med Biochem. 2024;43:1–10.  https://doi.org/10.5937/jomb0-45936.
  41. Plebani, M, Sciacovelli, L, Aita, A, Padoan, A, Chiozza, ML. Quality indicators to detect pre-analytical errors in laboratory testing. Clin Chim Acta. 2014;432:44–8.  https://doi.org/10.1016/j.cca.2013.07.033.
  42. Lippi, G, Simundic, A-M. The EFLM strategy for harmonization of the preanalytical phase. Clin Chem Lab Med. 2018;56:1660–6.  https://doi.org/10.1515/cclm-2017-0277.
  43. Sciacovelli, L, Lippi, G, Sumarac, Z, del Pino Castro, IG, Ivanov, A, De Guire, V, et al.. Pre-analytical quality indicators in laboratory medicine: performance of laboratories participating in the IFCC working group “Laboratory Errors and Patient Safety” project. Clin Chim Acta. 2019;497:35–40.  https://doi.org/10.1016/j.cca.2019.07.007.
  44. Badrick, T, Gay, S, Mackay, M, Sikaris, K. The key incident monitoring and management system–history and role in quality improvement. Clin Chem Lab Med. 2018;56:264–72.  https://doi.org/10.1515/cclm-2017-0219.
  45. Gay, S, Badrick, T. Changes in error rates in the Australian key incident monitoring and management system program. Biochem Med (Zagreb). 2020;30:257–64.  https://doi.org/10.11613/bm.2020.020704.
  46. Lippi, G, Chance, JJ, Church, S, Dazzi, P, Fontana, R, Giavarina, D, et al.. Preanalytical quality improvement: from dream to reality. Clin Chem Lab Med. 2011;49:1113–26.  https://doi.org/10.1515/cclm.2011.600.
  47. Almatrafi, AA. Preanalytical errors: a major issue in medical laboratory. Acta Sci Med Sci 2019;3:93–5. 
  48. Ly, H. Medical laboratory managers success with preanalytical errors. Walden University; 2017.
  49. Kornstein, MJ, Byrne, SP. The medicolegal aspect of error in pathology: a search of jury verdicts and settlements. Arch Pathol Lab Med. 2007;131:615–8.  https://doi.org/10.5858/2007-131-615-tmaoei.
  50. Ellervik, C, Vaught, J. Preanalytical variables affecting the integrity of human biospecimens in biobanking. Clin Chem. 2015;61:914–34.  https://doi.org/10.1373/clinchem.2014.228783.
  51. Jiang, Y, Jiang, H, Ding, S, Liu, Q. Application of failure mode and effects analysis in a clinical chemistry laboratory. Clin Chim Acta. 2015;448:80–5.  https://doi.org/10.1016/j.cca.2015.06.016.
  52. Da Rin, G. Pre-analytical workstations: a tool for reducing laboratory errors. Clin Chim Acta. 2009;404:68–74.  https://doi.org/10.1016/j.cca.2009.03.024.
  53. Georgiou, A, Williamson, M, Westbrook, JI, Ray, S. The impact of computerised physician order entry systems on pathology services: a systematic review. Int J Med Inform. 2007;76:514–29.  https://doi.org/10.1016/j.ijmedinf.2006.02.004.
  54. Kemp, GM, Bird, CE, Barth, JH. Short-term interventions on wards fail to reduce preanalytical errors: results of two prospective controlled trials. Ann Clin Biochem. 2012;49:166–9.  https://doi.org/10.1258/acb.2011.011133.
  55. Dagher, G, Becker, K-F, Bonin, S, Foy, C, Gelmini, S, Kubista, M, et al.. Pre-analytical processes in medical diagnostics: new regulatory requirements and standards. N Biotechnol. 2019;52:121–5.  https://doi.org/10.1016/j.nbt.2019.05.002.
  56. Sholademi, BA. Identification and reduction of pre-analytical errors in clinical chemistry through expert advice. Sheffield Hallam University; 2017.
  57. NSW health [Internet]. c2016 [cited 07/01/25]. Available from: https://www.health.nsw.gov.au/ehealth/Pages/ehealth-strategy.aspx.
  58. Cadamuro, J, Simundic, A-M. The preanalytical phase–from an instrument-centred to a patient-centred laboratory medicine. Clin Chem Lab Med. 2023;61:732–40.  https://doi.org/10.1515/cclm-2022-1036.
  59. Morrison, AP, Tanasijevic, MJ, Goonan, EM, Lobo, MM, Bates, MM, Lipsitz, SR, et al.. Reduction in specimen labeling errors after implementation of a positive patient identification system in phlebotomy. Am J Clin Pathol. 2010;133:870–7.  https://doi.org/10.1309/ajcpc95yymsllrcx.
  60. van Dongen-Lases, EC, Cornes, MP, Grankvist, K, Ibarz, M, Kristensen, GB, Lippi, G, et al.. Patient identification and tube labelling–a call for harmonisation. Clin Chem Lab Med. 2016;54:1141–5.  https://doi.org/10.1515/cclm-2015-1089.
  61. Piva, E, Tosato, F, Plebani, M. Pre-analytical phase: the automated ProTube device supports quality assurance in the phlebotomy process. Clin Chim Acta. 2015;451:287–91.  https://doi.org/10.1016/j.cca.2015.10.010.
  62. Vitestro [Internet]. c2024 [cited 16/12/2024]. Available from: https://vitestro.com/pivotal-trial-study-of-breakthrough-autonomous-blood-draw-technology-confirms-performance-safety-and-patient-acceptance/.
  63. Lippi, G, Baird, GS, Banfi, G, Bölenius, K, Cadamuro, J, Church, S, et al.. Improving quality in the preanalytical phase through innovation, on behalf of the European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for Preanalytical Phase (WG-PRE). Clin Chem Lab Med. 2017;55:489–500.  https://doi.org/10.1515/cclm-2017-0107.
  64. Jekelis, AW. Increased instrument intelligence — can it reduce laboratory error? Biomed Instrum Technol. 2005;39:232–6.  https://doi.org/10.2345/0899-8205(2005)39[232:IIIIRL]2.0.CO;2.
  65. Lopes, MG, Recktenwald, SM, Simionato, G, Eichler, H, Wagner, C, Quint, S, et al. Big data in transfusion medicine and artificial intelligence analysis for red blood cell quality control. Transfus Med Hemother. 2023;50:163–73.  https://doi.org/10.1159/000530458.
  66. Bakan, E, Bakan, N. Prevention of extra-analytical phase errors by non-analytical automation in clinical laboratory. Türk Biyokim Derg. 2021;46:235–43.  https://doi.org/10.1515/tjb-2020-0483.
  67. Cornes, MP, Atherton, J, Pourmahram, G, Borthwick, H, Kyle, B, West, J, et al. Monitoring and reporting of preanalytical errors in laboratory medicine: the UK situation. Ann Clin Biochem. 2016;53:279–84.  https://doi.org/10.1177/0004563215599561.
  68. Walter, W, Pfarr, N, Meggendorfer, M, Jost, P, Haferlach, T, Weichert, W. Next-generation diagnostics for precision oncology: preanalytical considerations, technical challenges, and available technologies. Semin Cancer Biol. 2022;84:3–15.  https://doi.org/10.1016/j.semcancer.2020.10.015.
  69. Tsai, ER, Tintu, AN, Demirtas, D, Boucherie, RJ, de Jonge, R, de Rijke, YB. A critical review of laboratory performance indicators. Crit Rev Clin Lab Sci. 2019;56:458–71.  https://doi.org/10.1080/10408363.2019.1641789.
  70. Tanasijevic, MJ, Melanson, SE, Tolan, NV, Ransohoff, JR, Conrad, MJ, Paik, H-I, et al. Significant operational improvements with implementation of next generation laboratory automation. Lab Med. 2021;52:329–37.  https://doi.org/10.1093/labmed/lmaa108.
  71. Vandenberg, O, Durand, G, Hallin, M, Diefenbach, A, Gant, V, Murray, P, et al.. Consolidation of clinical microbiology laboratories and introduction of transformative technologies. Clin Microbiol Rev. 2020;33.  https://doi.org/10.1128/cmr.00057-19.
  72. Hou, H, Zhang, R, Li, J. Artificial intelligence in the clinical laboratory. Clin Chim Acta. 2024:119724. https://doi.org/10.1016/j.cca.2024.119724.
  73. Ma, C, Wang, X, Wu, J, Cheng, X, Xia, L, Xue, F, et al.. Real-world big-data studies in laboratory medicine: current status, application, and future considerations. Clin Biochem. 2020;84:21–30.  https://doi.org/10.1016/j.clinbiochem.2020.06.014.
  74. Brown, AS, Badrick, T. The next wave of innovation in laboratory automation: systems for auto-verification, quality control and specimen quality assurance. Clin Chem Lab Med. 2023;61:37–43.  https://doi.org/10.1515/cclm-2022-0409.
  75. Lippi, G, Becan-McBride, K, Behúlová, D, Bowen, RA, Church, S, Delanghe, J, et al.. Preanalytical quality improvement: in quality we trust. Clin Chem Lab Med. 2013;51:229–41.  https://doi.org/10.1515/cclm-2012-0597.
  76. Lippi, G, von Meyer, A, Cadamuro, J, Simundic, A-M. Chemistry EFoC, Phase LMWGf P. PREDICT: a checklist for preventing preanalytical diagnostic errors in clinical trials. Clin Chem Lab Med. 2020;58:518–26.  https://doi.org/10.1515/cclm-2019-1089.
  77. O’Kane, MJ, Lynch, PM, McGowan, N. The development of a system for the reporting, classification and grading of quality failures in the clinical biochemistry laboratory. Ann Clin Biochem. 2008;45:129–34.  https://doi.org/10.1258/acb.2007.007097.
  78. Mehndiratta, M, Pasha, EH, Chandra, N, Almeida, EA. Quality indicators for evaluating errors in the preanalytical phase. J Lab Physicians. 2021;13:169–74.  https://doi.org/10.1055/s-0041-1729473.
  79. Plebani, M. The detection and prevention of errors in laboratory medicine. Ann Clin Biochem. 2010;47:101–10.  https://doi.org/10.1258/acb.2009.009222.
  80. Marin, AG, Rivas-Ruiz, F, del Mar Pérez-Hidalgo, M, Molina-Mendoza, P. Pre-analytical errors management in the clinical laboratory: a five-year study. Biochem Med (Zagreb). 2014;24:248–57.  https://doi.org/10.11613/bm.2014.027.
  81. Hawkins, R. Managing the pre-and post-analytical phases of the total testing process. Ann Lab Med. 2012;32:5.  https://doi.org/10.3343/alm.2012.32.1.5.
  82. Cadamuro, J, Carobene, A, Cabitza, F, Debeljak, Z, De Bruyne, S, van Doorn, W, et al.. A comprehensive survey of Artificial Intelligence adoption in European Laboratory Medicine: current utilization and prospects. Clin Chem Lab Med. 2025;63:692–703.  https://doi.org/10.1515/cclm-2024-1016.
  83. Pighi, L, Negrini, D, Lippi, G. Generative artificial intelligence (AI) for reporting the performance of laboratory biomarkers: not ready for prime time. Clin Chem Lab Med. 2025;63:2.  https://doi.org/10.1515/cclm-2024-0857.

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.