The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Coskun A.

Sandberg S.

Unsal I.

Yavuz F.G.

Coskun C.

Serteser M.

Kilercik M.

Aarsand A.K.

Personalized reference intervals — statistical approaches and considerations

Authors:

Coskun A., Sandberg S., Unsal I., Yavuz F.G., Coskun C., Serteser M., Kilercik M., Aarsand A.K.

More about the authors

Journal: Laboratory Service. 2022;11(4): 46‑53

Read: 1136 times


To cite this article:

Coskun A, Sandberg S, Unsal I, et al. . Personalized reference intervals — statistical approaches and considerations. Laboratory Service. 2022;11(4):46‑53. (In Russ.)
https://doi.org/10.17116/labs20221104146

Recommended articles:
Gut microbiota: role in human health and pote­ntial for personalized medi­cine. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):81-88
Rege­nerative capa­bilities of platelet-rich plasma in different age groups. Piro­gov Russian Journal of Surgery. 2025;(5):36-43
The role of TRP channels in migraine. Russian Journal of Pain. 2025;(3):93-103

References:

  1. Miller WG, Horowitz GL, Ceriotti F, Fleming JK, Greenberg N, Katayev A, et al. Reference intervals: strengths, weaknesses, and challenges. Clin Chem. 2016;62:916-923. 
  2. Coşkun A, Sandberg S, Unsal I, Cavusoglu C, Serteser M, Kilercik M, et al. Personalized reference intervals in laboratory medicine: a new model based on within-subject biological variation. Clin Chem. 2021;67:374-384. 
  3. Gräsbeck R, Saris NE. Establishment and use of normal values. Scand J Clin Lab Invest. 1969;26(110 suppl):62-63. 
  4. Harris EK. Some theory of reference values. II. Comparison of some statistical models of intraindividual variation in blood constituents. Clin Chem. 1976;22:1343-1350.
  5. Aarsand AK, Fernandez-Calle P, Webster C, Coskun A, Gonzales-Lao E, Diaz-Garzon J, et al. The EFLM biological variation database. Accessed Nov 2021. https://biologicalvariation.eu/
  6. Rorabacher DB. Statistical treatment for rejection of deviant values: critical values of Dixon’s «Q» parameter and related subrange ratios at the 95% confidence level. Anal Chem. 2002;63:139-146. 
  7. Dean RB, Dixon WJ. Simplified statistics for small numbers of observations more about this article. Anal Chem. 1951;23:636-638. 
  8. Coşkun A, Aarsand AK, Sandberg S, Guerra E, M, Díaz-Garzón J, et al. Within- and between-subject biological variation data for tumor markers based on the European Biological Variation Study. Clin Chem Lab Med. 2022;60:543-552. 
  9. Geisser S. Predictive inference: an introduction. London: Chapman & Hall; 1993;264. 
  10. Frey J. Data-drivennonparametricpredictionintervals. J Stat Plan Inference. 2013;143:1039-1048.
  11. Fraser CG. Biological variation: from principles to practice. Washington, DC: AACC Press; 2001.
  12. ISO 16269-8:2004 — Statistical interpretation of data — Part 8: Determination of prediction intervals. Geneva, Switzerland, ISO. 
  13. Hahn GJ, Meeker WQ, Escobar LA. Statistic alintervals: aguidefor practitioners and researchers. New Jersey: John Wiley & Sons, Incorporated; 2016;651. 
  14. Cebul RD, Hershey JC, Williams SV. Usingmultipletests: series and parallel approaches. Clin Lab Med. 1982;2:871-890. 
  15. Galen RS, Gambino SR. Beyond normality: the predictive value and efficiency of medical diagnoses. New York: John Wiley & Sons; 1975.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.