The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Vokhmianina N.V.

North-Western State Medical University named after I.I. Mechnikov

Gaikovaya L.B.

Mechnikov North-Western State Medical University

Evteeva D.A.

North-Western State Medical University named after I.I. Mechnikov

Vlasova Yu.A.

North-Western State Medical University named after I.I. Mechnikov

Homocysteine as a predictor of the severity of coronavirus infection: biochemical justification

Authors:

Vokhmianina N.V., Gaikovaya L.B., Evteeva D.A., Vlasova Yu.A.

More about the authors

Journal: Laboratory Service. 2022;11(1): 43‑50

Read: 3707 times


To cite this article:

Vokhmianina NV, Gaikovaya LB, Evteeva DA, Vlasova YuA. Homocysteine as a predictor of the severity of coronavirus infection: biochemical justification. Laboratory Service. 2022;11(1):43‑50. (In Russ.)
https://doi.org/10.17116/labs20221101143

Recommended articles:
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146

References:

  1. Viglione G. How many people has the coronavirus killed? Nature 585, 22-24 (2020). Med Hypotheses. 2021;149:110543. https://doi.org/10.1016/j.mehy.2021.110543
  2. Lvov DK, Alkhovsky SV. Source of the covid-19 pandemic:ecology and genetics of coronaviruses (betacoronavirus: coronaviridae) SARS-CoV, SARS-CoV-2 (subgenenus Sarbecovirus), and AND MERS-CoV (subgenenus Merbecovirus). Problems of virology (Voprosy virusologii). 2020;65(2). (In Russ.). https://doi.org/10.36233/0507-4088-2020-65-2-62-70
  3. Samuel Long SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives Viruses. 2021;13(10):1923. https://doi.org/10.3390/v13101923
  4. García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol. 2020;11:1441. PMID: 32612615; PMCID: PMC7308593. https://doi.org/10.3389/fimmu.2020.01441
  5. Chao Li, Qifang He, Hebu Qian, Jun Liu. Overview of the pathogenesis of COVID-19 (Review) Exp Ther Med. 2021;22(3):1011. Epub 2021 Jul 15.  https://doi.org/10.3892/etm.2021.10444
  6. Gregory S. Ducker and Joshua D. Rabinowitz, One-Carbon Metabolism in Health and Disease Cell Metab. 2017;25(1):27-42.  https://doi.org/10.1016/j.cmet.2016.08.009
  7. Stanzione R, Cotugno M, Bianchi F, Marchitti S, Forte M, Volpe M, Rubattu S. Pathogenesis of Ischemic Stroke: Role of Epigenetic Mechanisms. Genes. 2020;11(1):89.  https://doi.org/10.3390/genes11010089
  8. Sabirova AV, Volosnikov DK, Dolinina AF, Gornostaeva AB, Chulkova AV. Homocysteinemia — a marker of multifactorial diseases of childhood.Pediatric Bulletin of the South Ural. 2021;1:57-67. (In Russ.). https://doi.org/10.34710/Chel.2021.61.52.008
  9. Perła-Kaján J, Jakubowski H. Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci. 2019;20:3140. https://doi.org/10.3390/ijms2013314
  10. Mccaddon A, Regland B. COVID-19: A Methyl-Group Assault? Medical Hypotheses. 2021. https://doi.org/10.1016/j.mehy.2021.110543
  11. Zaric BL, Obradovic M, Bajic V, Haidara MA, Jovanovic M, Isenovic ER. Homocysteine and Hyperhomocysteinaemia. Curr Med Chem. 2019;26(16):2948-2961. PMID: 29532755. https://doi.org/10.2174/0929867325666180313105949
  12. Froese DS, Fowler B, Baumgartner MR. Vitamin B12, folate, and the methionine remethylation cycle — biochemistry, pathways, and regulation. J Inherit Metab Dis. 2019;42:673-685.  https://doi.org/10.1002/jimd.1 2009
  13. Darenskaya MA, Kolesnikova LI, Kolesnikov SI. COVID-19: oxidative stress and the relevance of antioxidant therapy. Annals of the Russian academy of medical sciences. 2020;75:4:318-325. (In Russ.). https://doi.org/10.15690/vramn1360
  14. Giovanni Ponti, Cristel Ruini, Aldo Tomasi. Homocysteine as a potential predictor of cardiovascular risk in patients with COVID-19. Medical Hypotheses, 2020;143:109859. https://doi.org/10.1016/j.mehy.2020.109859
  15. Singh Y, Gupta G, Kazmi I, et al. SARS CoV-2 aggravates cellular metabolism mediated complications in COVID-19 infection. Dermatologic Therapy. 2020;33:e13871. https://doi.org/10.1111/dth.13871
  16. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem. 2000;275(38):29318-23. PMID: 10884384. https://doi.org/10.1074/jbc.M002725200
  17. Barroso M, Handy DE, Castro R. The Link Between Hyperhomocysteinemia and Hypomethylation: Implications for Cardiovascular Disease, Journal of Inborn Errors of Metabolism and Screening (JIEMS). 2017;5:1-15.  https://doi.org/10.1177/2326409817698994
  18. Kim CS, Kim YR, Naqvi A, et al. Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc. Cardiovasc Res. 2011;92(3):466-475.  https://doi.org/10.1093/cvr/cvr250
  19. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, Tavares de Almeida I. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem. 2003;49(8):1292-1296. PMID: 12881445. https://doi.org/10.1373/49.8.1292
  20. Han XB, Zhang HP, Cao CJ, et al. Aberrant DNA methylation of the PDGF gene in homocysteine mediated VSMC proliferation and its underlying mechanism. Mol Med Rep. 2014;10(2):947-954.  https://doi.org/10.3892/mmr.2014.2249
  21. Geisel J, Schorr H, Heine GH, et al. Decreased p66Shc promoter methylation in patients with end-stage renal disease. Clin Chem Lab Med. 2007;45(12):1764-1770. https://doi.org/10.1515/cclm.2007.357
  22. Adaikalakoteswari A, Finer S, Voyias PD, et al. Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clin Epigenetics. 2015;7(1):14.  https://doi.org/10.1186/s13148-015-0046-8
  23. Lakshmi SVV, Naushad SM, Reddy CA, et al. Oxidative stress in coronary artery disease: epigenetic perspective. Mol Cell Biochem. 2013;374(1-2):203-211.  https://doi.org/10.1007/s11010-012-1520-7
  24. Tekpli X, Landvik NE, Anmarkud KH, Skaug V, Haugen A, Zienolddiny S. DNA methylation at promoter regions of interleukin 1B, interleukin 6, and interleukin 8 in non-small cell lung cancer. Cancer Immunol Immunother. 2013;62(2):337-345.  https://doi.org/10.1007/s00262-012-1340-3
  25. Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol. 1999;66(6):876-888.  https://doi.org/10.1002/jlb.66.6.876
  26. Wei Huang, Tian Qi Chen, Ke Fang, Zhan Cheng Zeng, Hua Ye and Yue Qin Chen N6 methyladenosine methyltransferases: functions, regulation, and clinical potential J Hematol Oncol. 2021;14:117:2-19.  https://doi.org/10.1186/s13045-021-01129-826
  27. Feng Q, Zhao H, Xu L, Xie Z. N6-Methyladenosine Modification and Its Regulation of Respiratory Viruses. Front Cell Dev Biol. 2021;9:699997. https://doi.org/10.3389/fcell.2021.699997
  28. Liu J, Xu YP, Li K, Ye Q, Zhou HY, Sun H, Li X, Yu L, Deng YQ, Li RT, Cheng ML, He B, Zhou J, Li XF, Wu A, Yi C, Qin CF. The m6A methylome of SARS-CoV-2 in host cells. Cell Res. 2021;31(4):404-414. Epub 2021 Jan 28. PMID: 33510385; PMCID: PMC8115241. https://doi.org/10.1038/s41422-020-00465-7
  29. Polevoda B, Sherman F. Methylation of proteins involved in translation. Mol Microbiol. 2007;65(3):590-606. Epub 2007 Jul 4. PMID: 17610498. https://doi.org/10.1111/j.1365-2958.2007.05831.x
  30. Diaz K, Meng Y, Huang R. Past, present, and perspectives of protein N-terminal methylation. Curr Opin Chem Biol. 2021;63:115-122. Epub 2021 Apr 8. PMID: 33839647; PMCID: PMC8384643. https://doi.org/10.1016/j.cbpa.2021.02.017
  31. Schleithoff C, Voelter-Mahlknecht S, Dahmke IN, Mahlknecht U. On the epigenetics of vascular regulation and disease. Clin Epigenetics. 2012;4(1):7. PMID: 22621747; PMCID: PMC3438017. https://doi.org/10.1186/1868-7083-4-7
  32. Santos-Rosa H, Millán-Zambrano G, Han N, Leonardi T, Klimontova M, Nasiscionyte S, Pandolfini L, Tzelepis K, Bartke T, Kouzarides T. Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Mol Cell. 2021;81(13):2793-2807.e8. Epub 2021 May 11. PMID: 33979575. https://doi.org/10.1016/j.molcel.2021.04.021
  33. Tomo S, Saikiran G, Banerjee M, Paul S. Selenium to selenoproteins — role in COVID-19. EXCLI Journal. 2021;20:781-791.  https://doi.org/10.17179/excli2021-3530
  34. Barroso M, Kao D, Blom HJ, et al. S-adenosylhomocysteine induces inflammation through NFkB: A possible role for EZH2 in endothelial cell activation. Biochim Biophys Acta. 2016;1862(1):82-92.  https://doi.org/10.1016/j.bbadis.2015.10.019
  35. Martynov MYu, Bogolepova AN, Yasamanova AN. Endothelial dysfunction in COVID-19 and cognitive impairment. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2021;121(6):93-99. (In Russ.). https://doi.org/10.17116/jnevro202112106193
  36. Esse R, Barroso M, Tavares de Almeida I, Castro R. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int J Mol Sci. 2019;20(4):867. PMID: 30781581; PMCID: PMC6412520. https://doi.org/10.3390/ijms20040867
  37. Liang C, Wang QS, Yang X, Zhu D, Sun Y, Niu N, Yao J, Dong BH, Jiang S, Tang LL, Lou J, Yu CJ, Shao Q, Wu MM, Zhang ZR. Homocysteine Causes Endothelial Dysfunction via Inflammatory Factor-Mediated Activation of Epithelial Sodium Channel (ENaC). Front Cell Dev Biol. 2021;9:672335. PMID: 34222246; PMCID: PMC8247579. https://doi.org/10.3389/fcell.2021.672335
  38. Borowska M, Winiarska H, Dworacka M, Wesołowska A, Dworacki G, Mikołajczak PŁ. The Effect of Homocysteine on the Secretion of Il-1_, Il-6, Il-10, Il-12 and RANTES by Peripheral Blood Mononuclear Cells — An In VitroStudy. Molecules. 2021;26,:6671. https://doi.org/10.3390/molecules26216671
  39. Bellan M, Azzolina D, Hayden E, et al Simple Parameters from Complete Blood Count Predict In-Hospital Mortality in COVID-19. Dis Markers. 2021;2021:8863053. PMID: 34055104; PMCID: PMC8123088. https://doi.org/10.1155/2021/8863053
  40. Lord, Nancy and Ruwart, Mary J, Homocysteine and the SARS-CoV-2 Coronavirus — The X Factor of Severe Disease and Death (October 10, 2020). https://ssrn.com/abstract=3708654 or https://doi.org/10.2139/ssrn.3708654
  41. Sahoo S, Sasikala T, Kumar SV, Lakshmanna N. Could homocysteine, angiotensin and alamandine be used as potential biomarkers in management of COVID-19? Int J Res Med Sci. 2021;9:1834-9.  https://doi.org/10.18203/2320-6012.ijrms20212261
  42. Ponti G, Roli L, Oliva G, Manfredini M, Trenti T, Kaleci S, Tomasi A. Homocysteine (Hcy) assessment to predict outcomes of hospitalized COVID-19 patients: a multicenter study on 313 COVID-19 patients. Clinical Chemistry and Laboratory Medicine (CCLM). 2021;59(9):354-357.  https://doi.org/10.1515/cclm-2021-0168
  43. Corradini E, Ventura P, Ageno W, et al. SIMI-COVID-19 Collaborators. Clinical factors associated with death in 3044 COVID-19 patients managed in internal medicine wards in Italy: results from the SIMI-COVID-19 study of the Italian Society of Internal Medicine (SIMI). Intern Emerg Med. 2021;16(4):1005-1015. Epub 2021 Apr 24. PMID: 33893976; PMCID: PMC8065333. https://doi.org/10.1007/s11739-021-02742-8
  44. Boyko AN, Shamalov NA, Boyko OV, Arinina EE, Lyang OV, Dubchenko EA, Ivanov AV, Kubatiev AA. The first experience with Angiovit in the combination treatment of acute COVID-19 infection. Nevrologiya, neiropsikhiatriya, psikhosomatika. 2020;12(3):82-86. (In Russ.). https://doi.org/10.14412/2074-2711-2020-3-82-86
  45. Gaikovaya LB, Evteeva DA, Vokhmyanina NV. Determination of folic acid in blood in patients with new coronaviral infection.Vserossiiskaya nauchno-prakticheskaya konferentsiya s mezhdunarodnym uchastiem. «Sovremennye dostizheniya khimiko-biologicheskikh nauk v profilakticheskoi i klinicheskoi meditsine»; December 2—3, 2021. Saint-Petersburg. Accessed February 1, 2022. https://www.elibrary.ru/item.asp?id=47392040
  46. Ponomareva MN, Petrov IM, Kalyuzhnaya EN, Gapon LI, Petelina TI, Yaroslavskaya EI. Symptomatic Metabolic Treatment of Ophthalmopathies in Patients with COVID-19-Associated Pneumonia. The EYE GLAZ. 2021;23(3):19-26. (In Russ.). https://doi.org/10.33791/2222-4408-2021-3-19-26

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.