The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Zybina N.N.

Nikiforov Russian Center of Emergency and Radiation Medicine — EMERCOM of Russia

Nikonov E.L.

Pirogov Russian National Research Medical University

Gershtein E.S.

N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation

Memdli Z.Z.

N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation

Stilidi I.S.

Blokhin National Medical Research Center of Oncology

Kushlinskii N.E.

N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation

Zonulin is a marker of epithelial and endothelial barrier functions in non-communicable diseases (narrative review)

Authors:

Zybina N.N., Nikonov E.L., Gershtein E.S., Memdli Z.Z., Stilidi I.S., Kushlinskii N.E.

More about the authors

Read: 7434 times


To cite this article:

Zybina NN, Nikonov EL, Gershtein ES, Memdli ZZ, Stilidi IS, Kushlinskii NE. Zonulin is a marker of epithelial and endothelial barrier functions in non-communicable diseases (narrative review). Russian Journal of Evidence-Based Gastroenterology. 2022;11(1):28‑44. (In Russ.)
https://doi.org/10.17116/dokgastro20221101128

Recommended articles:
Perfection of cancer patients routing model at the medi­cal care different stages. Russian Journal of Preventive Medi­cine. 2024;(12):7-15
Chro­nic inflammation in case of obesity-associated diseases. Russian Journal of Preventive Medi­cine. 2025;(1):115-121

References:

  1. Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The intestinal epithelium: central Coordinator of Mucosal Immunity. Trends in Immunology. 2018;39(9):677-696.  https://doi.org/10.1016/j.it.2018.04.002
  2. Serek P, Oleksy-Wawrzyniak M. The Effect of Bacterial Infections, Probiotics and Zonulin on Intestinal Barrier Integrity. International Journal of Molecular Sciences. 2021;22(21):11359. https://doi.org/10.3390/ijms222111359
  3. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiological Reviews. 2011;91(1):151-175.  https://doi.org/10.1152/physrev.00003.2008
  4. Khavkin AI, Bogdanova NM, Novikova VP. Biological role of zonulin: a biomarker of increased intestinal permeability syndrome. Rossijskij vestnik perinatologii i pediatrii. 2021;66:(1):31-38. (In Russ.). https://doi.org/10.21508/1027-4065-2021-66-1-31-38
  5. Marafini I, Monteleone I, Di Fusco D, Cupi ML, Paoluzi OA, Colantoni A, Ortenzi A, Izzo R, Vita S, De Luca E, Sica G, Pallone F, Monteleone G. TNF-a Producing Innate Lymphoid Cells (ILCs) Are Increased in Active Celiac Disease and Contribute to Promote Intestinal Atrophy in Mice. PLoS One. 2015;10(5):e0126291. https://doi.org/10.1371/journal.pone.0126291
  6. Bergmann KR, Liu SX, Tian R, Kushnir A, Turner JR, Li HL, Chou PM, Weber CR, De Plaen IG. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. The American Journal of Pathology. 2013;182(5):1595-1606. https://doi.org/10.1016/j.ajpath.2013.01.013
  7. Ling X, Linglong P, Weixia D, Hong W. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model. PLoS One. 2016;11(8):e0161635. https://doi.org/10.1371/journal.pone.0161635
  8. Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet. 2000;355(9214):1518-1519. https://doi.org/10.1016/S0140-6736(00)02169-3
  9. Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, Thakar M, Iacono G, Carroccio A, D’Agate C, Not T, Zampini L, Catassi C, Fasano A. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scandinavian Journal of Gastroenterology. 2006;41(4):408-419.  https://doi.org/10.1080/00365520500235334
  10. Hollon J, Puppa EL, Greenwald B, Goldberg E, Guerrerio A, Fasano A. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients. 2015;7(3):1565-1576. https://doi.org/10.3390/nu7031565
  11. Mooradian AD, Morley JE, Levine AS, Prigge WF, Gebhard RL. Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia. 1986;29(4):221-224.  https://doi.org/10.1007/BF00454879
  12. Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, Lampis R, Kryszak D, Cartenì M, Generoso M, Iafusco D, Prisco F, Laghi F, Riegler G, Carratu R, Counts D, Fasano A. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 2006;55(5):1443-1449. https://doi.org/10.2337/db05-1593
  13. Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. International Journal of Clinical and Experimental Pathology. 2015;8(5):5153-5160.
  14. Pavón EJ, Muñoz P, Lario A, Longobardo V, Carrascal M, Abián J, Martin AB, Arias SA, Callejas-Rubio JL, Sola R, Navarro-Pelayo F, Raya-Alvarez E, Ortego-Centeno N, Zubiaur M, Sancho J. Proteomic analysis of plasma from patients with systemic lupus erythematosus: Increased presence of haptoglobin α2 polypeptide chains over the α1 isoforms. Proteomics. 2006;6(suppl 1):282-292.  https://doi.org/10.1002/pmic.200500404
  15. Liu J, Zhu P, Peng J, Li K, Du J, Gu J, Ou Y. Identification of disease-associated proteins by proteomic approach in ankylosing spondylitis. Biochemical and Biophysical Research Communications. 2007;357(2):531-536.  https://doi.org/10.1016/j.bbrc.2007.03.179
  16. Yacyshyn B, Meddings J, Sadowski D, Bowen-Yacyshyn MB. Multiple sclerosis patients have peripheral blood CD45ROC B cells and increased intestinal permeability. Digestive Diseases and Sciences. 1996;41(12):2493-2498. https://doi.org/10.1007/BF02100148
  17. Nouri M, Bredberg A, Weström B, Lavasani S. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS One. 2014;9(9):e106335. https://doi.org/10.1371/journal.pone.0106335
  18. Mielants H, De Vos M, Goemaere S, Schelstraete K, Cuvelier C, Goethals K, Maertens M, Ackerman C, Veys EM. Intestinal mucosal permeability in inflammatory rheumatic diseases. II. Role of disease. The Journal of Rheumatology. 1991;18(3):394-400. 
  19. Moreno-Navarrete JM, Sabater M, Ortega F, Ricart W, Fernández-Real JM. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One. 2012;7(5):e37160. https://doi.org/10.1371/journal.pone.0037160
  20. Zak-Gołąb A, Kocełak P, Aptekorz M, Zientara M, Juszczyk L, Martirosian G, Chudek J, Olszanecka-Glinianowicz M. Gut microbiota, microinflammation, metabolic profile, and zonulin concentration in obese and normal weight subjects. International Journal of Endocrinology. 2013;2013:674106. https://doi.org/10.1155/2013/674106
  21. Pacifico L, Bonci E, Marandola L, Romaggioli S, Bascetta S, Chiesa C. Increased circulating zonulin in children with biopsy-proven nonalcoholic fatty liver disease. World Journal of Gastroenterology. 2014;20(45):17107-17114. https://doi.org/10.3748/wjg.v20.i45.17107
  22. Jayashree B, Bibin YS, Prabhu D, Shanthirani CS, Gokulakrishnan K, Lakshmi BS, Mohan V, Balasubramanyam M. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Molecular and Cellular Biochemistry. 2014;388(1-2):203-210.  https://doi.org/10.1007/s11010-013-1911-4
  23. Zhang D, Zhang L, Zheng Y, Yue F, Russell RD, Zeng Y. Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Research and Clinical Practice. 2014;106(2):312-318.  https://doi.org/10.1016/j.diabres.2014.08.017
  24. Diamanti-Kandarakis E, Kandarakis H, Legro RS. The role of genes and environment in the etiology of PCOS. Endocrine. 2006; 30(1):19-26.  https://doi.org/10.1385/ENDO:30:1:19
  25. Zhang D, Zhang L, Yue F, Zheng Y, Russell R. Serum zonulin is elevated in women with polycystic ovary syndrome and correlates with insulin resistance and severity of anovulation. European Journal of Endocrinology. 2015;172(1):29-36.  https://doi.org/10.1530/EJE-14-0589
  26. Rittirsch D, Flierl MA, Nadeau BA, Day DE, Huber-Lang MS, Grailer JJ, Zetoune FS, Andjelkovic AV, Fasano A, Ward PA. Zonulin as prehaptoglobin2 regulates lung permeability and activates the complement system. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2013;304(12):863-872.  https://doi.org/10.1152/ajplung.00196.2012
  27. Hijazi Z, Molla AM, Al-Habashi H, Muawad WM, Molla AM, Sharma PN. Intestinal permeability is increased in bronchial asthma. Archives of Disease in Childhood. 2004;89(3):227-229.  https://doi.org/10.1136/adc.2003.027680
  28. Li C, Gao M, Zhang W, Chen C, Zhou F, Hu Z, Zeng C. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease. Scientific Reports. 2016;6:29142. https://doi.org/10.1038/srep29142
  29. Klaus DA, Motal MC, Burger-Klepp U, Marschalek C, Schmidt EM, Lebherz-Eichinger D, Krenn CG, Roth GA. Increased plasma zonulin in patients with sepsis. Biochemia Medica. 2013;23(1):107-111.  https://doi.org/10.11613/BM.2013.013
  30. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, Robinson J, Huang Y, Epling L, Martin JN, Deeks SG, Meinert CL, Van Natta ML, Jabs DA, Lederman MM. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. The Journal of Infectious Diseases. 2014;210(8):1228-1238. https://doi.org/10.1093/infdis/jiu238
  31. Serrano-Villar S, Sainz T, Ma ZM, Utay NS, Chun TW, Mann S, Kashuba AD, Siewe B, Albanese A, Troia-Cancio P, Sinclair E, Somasunderam A, Yotter T, Deeks SG, Landay A, Pollard RB, Miller CJ, Moreno S, Asmuth DM. Effects of Combined CCR5/Integrase Inhibitors-Based Regimen on Mucosal Immunity in HIV Infected Patients Naive to Antiretroviral Therapy: A Pilot Randomized Trial. PLoS Pathogens. 2016;12(3):e1005540. https://doi.org/10.1371/journal.ppat.1005540
  32. Guerrant RL, Leite AM, Pinkerton R, Medeiros PH, Cavalcante PA, DeBoer M. Biomarkers of Environmental Enteropathy, Inflammation, Stunting, and Impaired Growth in Northeast Brazil. PLoS One. 2016;11(9):e0158772. https://doi.org/10.1371/journal.pone.0158772
  33. D’Eufemia P, Celli M, Finocchiaro R, Pacifico L, Viozzi L, Zaccagnini M, Cardi E, Giardini O. Abnormal intestinal permeability in children with autism. Acta Paediatrica. 1996;85(9):1076-1079. https://doi.org/10.1111/j.1651-2227.1996.tb14220.x
  34. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Annals of the New York Academy of Sciences. 2012; 1258(1):25-33.  https://doi.org/10.1111/j.1749-6632.2012.06538.x
  35. El Asmar R, Panigrahi P, Bamford P, Berti I, Not T, Coppa GV, Catassi C, Fasano A. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology. 2002;123(5):1607-1615. https://doi.org/10.1053/gast.2002.36578
  36. Keita ÅV, Söderholm JD. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterology and Motility. 2010;22(7):718-733.  https://doi.org/10.1111/j.1365-2982.2010.01498.x
  37. Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harbor Perspectives in Biology. 2018;10(1):a029314. https://doi.org/10.1101/cshperspect.a029314
  38. Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harbor Perspectives in Biology. 2009; 1(2):a002584. https://doi.org/10.1101/cshperspect.a002584
  39. Farquhar MG, Palade GE. Junctional complexes in various epithelia. The Journal of Cell Biology. 1963;17(2):375-412.  https://doi.org/10.1083/jcb.17.2.375
  40. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. The Journal of Cell Biology. 1998;141(7):1539-1550. https://doi.org/10.1083/jcb.141.7.1539
  41. Günzel D, Fromm M. Claudins and other tight junction proteins. Comprehensive Physiology. 2012;2(3):1819-1852. https://doi.org/10.1002/cphy.c110045
  42. Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Seminars in Cell and Developmental Biology. 2014;36:157-165.  https://doi.org/10.1016/j.semcdb.2014.08.011
  43. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. Annual Review of Physiology. 2011;73:283-309.  https://doi.org/10.1146/annurev-physiol-012110-142150
  44. Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cellular Signalling. 2020;66:109485. https://doi.org/10.1016/j.cellsig.2019.109485
  45. Suzuki T. Regulation of the intestinal barrier by nutrients: the role of tight junctions. Animal Science Journal. 2020;91(1):e13357. https://doi.org/10.1111/asj.13357
  46. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. The Journal of Cell Biology. 1993;123(6 Pt 2):1777-1788. https://doi.org/10.1083/jcb.123.6.1777
  47. Wong V. Phosphorylation of occludin correlates with occludin localization and function at the tight junction. The American Journal of Physiology. 1997;273(6):1859-1867. https://doi.org/10.1152/ajpcell.1997.273.6.c1859
  48. Martìn-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. The Journal of Cell Biology. 1998;142(1):117-127.  https://doi.org/10.1083/jcb.142.1.117
  49. Ikenouchi J, Umeda K, Tsukita S, Furuse M, Tsukita S. Requirement of ZO1 for the formation of belt-like adherens junctions during epithelial cell polarization. The Journal of Cell Biology. 2007; 176(6):779-786.  https://doi.org/10.1083/jcb.200612080
  50. Higashi T, Tokuda S, Kitajiri S, Masuda S, Nakamura H, Oda Y, Furuse M. Analysis of the ‘angulin’ proteins LSR, ILDR1 and ILDR2-tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. Journal of Cell Science. 2013;126(Pt 4): 966-977.  https://doi.org/10.1242/jcs.116442
  51. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 2006;126(4):741-754.  https://doi.org/10.1016/j.cell.2006.06.043
  52. González-Mariscal L, Gallego-Gutiérrez H, González-González L, Hernández-Guzmán Ch. ZO-2 Is a Master Regulator of Gene Expression, Cell Proliferation, Cytoarchitecture, and Cell Size. International Journal of Molecular Sciences. 2019;20(17):4128. https://doi.org/10.3390/ijms20174128
  53. González-Mariscal L, Posadas Y, Miranda J, Uc PY, Ortega-Olvera JM, Hernández S. Strategies that Target Tight Junctions for Enhanced Drug Delivery. Current Pharmaceutical Design. 2016;22(35):5313-5346. https://doi.org/10.2174/1381612822666160720163656
  54. González-Mariscal L, Quirós M, Díaz-Coránguez M. ZO proteins and redox-dependent processes. Antioxidants and Redox Signaling. 2011;15(5):1235-1253. https://doi.org/10.1089/ars.2011.3913
  55. Jesaitis LA, Goodenough DA. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. The Journal of Cell Biology. 1994;124(6):949-961.  https://doi.org/10.1083/jcb.124.6.949
  56. Itoh M, Morita K, Tsukita S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and α catenin. The Journal of Biological Chemistry. 1999;274(9):5981-5986. https://doi.org/10.1074/jbc.274.9.5981
  57. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. The Journal of Biological Chemistry. 1998;273(45):29745-29753. https://doi.org/10.1074/jbc.273.45.29745
  58. Fanning AS, Ma TY, Anderson JM. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB Journal. 2002;16(13):1835-1837. https://doi.org/10.1096/fj.02-0121fje
  59. Cordenonsi M, D’Atri F, Hammar E, Parry DA, Kendrick-Jones J, Shore D, Citi S. Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. The Journal of Cell Biology. 1999;147(7):1569-1582. https://doi.org/10.1083/jcb.147.7.1569
  60. Citi S, Paschoud S, Pulimeno P, Timolati F, De Robertis F, Jond L, Guillemot L. The tight junction protein cingulin regulates gene expression and rhoA signaling. Annals of the New York Academy of Sciences. 2009;1165:88-98.  https://doi.org/10.1111/j.1749-6632.2009.04053.x
  61. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology. 2004;127(1):224-238.  https://doi.org/10.1053/j.gastro.2004.04.015
  62. Shinto O, Yashiro M, Kawajiri H, Shimizu K, Shimizu T, Miwa A, Hirakawa K. Inhibitory effect of a TGFbeta receptor type-I inhibitor, Ki26894, on invasiveness of scirrhous gastric cancer cells. British Journal of Cancer. 2010;102(5):844-851.  https://doi.org/10.1038/sj.bjc.6605561
  63. Doi Y, Yashiro M, Yamada N, Amano R, Noda S, Hirakawa K. VEGF-A/VEGFR-2 signaling plays an important role for the motility of pancreas cancer cells. Annals of Surgical Oncology. 2012; 19(8):2733-2743. https://doi.org/10.1245/s10434-011-2181-6
  64. Pálmer HG, González-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, Quintanilla M, Cano A, de Herreros AG, Lafarga M, Muñoz A. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology. 2001;154(2):369-387.  https://doi.org/10.1083/jcb.200102028
  65. Hernández-Monge J, Garay E, Raya-Sandino A, Vargas-Sierra O, Díaz-Chávez J, Popoca-Cuaya M, Lambert PF, González-Mariscal L, Gariglio P. Papillomavirus E6 oncoprotein up-regulates occludin and ZO-2 expression in ovariectomized mice epidermis. Experimental Cell Research. 2013;319(17):2588-2603. https://doi.org/10.1016/j.yexcr.2013.07.028
  66. Kim S, Coulombe PA. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nature Reviews. Molecular Cell Biology. 2010;11(1):75-81.  https://doi.org/10.1038/nrm2818
  67. Suarez C, Kovar DR. Internetwork competition for monomers governs actin cytoskeleton organization. Nature Reviews. Molecular Cell Biology. 2016;17(12):799-810.  https://doi.org/10.1038/nrm.2016.106
  68. Al-Sadi RM, Ma TY. IL-1β Causes an Increase in Intestinal Epithelial Tight Junction Permeability. Journal of Immunology. 2007; 178(7):4641-4649. https://doi.org/10.4049/jimmunol.178.7.4641
  69. Turner JR. Intestinal mucosal barrier function in health and disease. Nature Reviews. Immunology. 2009;9(11):799-809.  https://doi.org/10.1038/nri2653
  70. Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg CP. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell. 2019;179(4):937-952.e18.  https://doi.org/10.1016/j.cell.2019.10.006
  71. Mahapatro M, Erkert L, Becker C. Cytokine-Mediated Crosstalk between Immune Cells and Epithelial Cells in the Gut. Cells. 2021;10(1):111.  https://doi.org/10.3390/cells10010111
  72. Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R, Fasano A. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(8):2916-2921. https://doi.org/10.1073/pnas.0500178102
  73. Rathinam VA, Chan FK-M. Inflammasome, Inflammation, and Tissue Homeostasis. Trends in Molecular Medicine. 2018;24(3):304-318.  https://doi.org/10.1016/j.molmed.2018.01.004
  74. Noth R, Stüber E, Häsler R, Nikolaus S, Kühbacher T, Hampe J, Bewig B, Schreiber S, Arlt A. Anti-TNF-a antibodies improve intestinal barrier function in Crohn’s disease. Journal of Crohn’s and Colitis. 2012;6(4):464-469.  https://doi.org/10.1016/j.crohns.2011.10.004
  75. Brown GR, Lindberg G, Meddings J, Silva M, Beutler B, Thiele D. Tumor necrosis factor inhibitor ameliorates murine intestinal graft-vs.-host disease. Gastroenterology. 1999;116(3):593-601.  https://doi.org/10.1016/S0016-5085(99)70181-2
  76. Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. Journal of Cell Science. 2006;119(Pt 10):2095-2106. https://doi.org/10.1242/jcs.02915
  77. Su L, Shen L, Clayburgh DR, Nalle SC, Sullivan EA, Meddings JB, Abraham C, Turner JR. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology. 2009;136(2):551-563.  https://doi.org/10.1053/j.gastro.2008.10.081
  78. Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB Journal. 2005;19(8):923-933.  https://doi.org/10.1096/fj.04-3260com
  79. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. The interleukin (IL)-1 cytokine family — Balance between agonists and antagonists in inflammatory diseases. Cytokine. 2015;76(1):25-37.  https://doi.org/10.1016/j.cyto.2015.06.017
  80. Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, Bailis W, Low JS, Harman CC, Graham M, Elinav E, Flavell RA. Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis. Cell. 2015;163(6):1444-1456. https://doi.org/10.1016/j.cell.2015.10.072
  81. Harrison OJ, Srinivasan N, Pott J, Schiering C, Krausgruber T, Ilott NE, Maloy KJ. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3+ Treg cell function in the intestine. Mucosal Immunology. 2015;8(6):1226-1236. https://doi.org/10.1038/mi.2015.13
  82. Shohan M, Dehghani R, Khodadadi A, Dehnavi S, Ahmadi R, Joudaki N, Houshmandfar S, Shamshiri M, Shojapourian S, Bagheri N. Interleukin-22 and intestinal homeostasis: Protective or destructive? IUBMB Life. 2020;72(8):1585-1602. https://doi.org/10.1002/iub.2295
  83. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2006;445(7128):648-651.  https://doi.org/10.1038/nature05505
  84. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP. Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense. Immunity. 2008;29(6):958-970.  https://doi.org/10.1016/j.immuni.2008.11.001
  85. Lindemans CA, Calafiore M, Mertelsmann AM, O’Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G, Ivanov JA, Fu YY, Takashima S, Hua G, Martin ML, O’Rourke KP, Lo YH, Mokry M, Romera-Hernandez M, Cupedo T, Dow L, Nieuwenhuis EE, Shroyer NF, Liu C, Kolesnick R, van den Brink MRM, Hanash AM. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015; 528(7583):560-564.  https://doi.org/10.1038/nature16460
  86. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ, Ouyang W. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Medicine. 2008;14(3):282-289.  https://doi.org/10.1038/nm1720
  87. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. Journal of Immunology. 2000;164(2):966-972.  https://doi.org/10.4049/jimmunol.164.2.966
  88. Thaiss CA, Levy M, Suez J, Elinav E. The interplay between the innate immune system and the microbiota. Current Opinion in Immunology. 2014;26:41-48.  https://doi.org/10.1016/j.coi.2013.10.016
  89. Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, Fenton LA, Bruno ME, Kaetzel CS. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunology. 2012;5(5):501-512.  https://doi.org/10.1038/mi.2012.23
  90. Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008; 456(7221):507-510.  https://doi.org/10.1038/nature07450
  91. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta. 2008;1778(3):660-669.  https://doi.org/10.1016/j.bbamem.2007.07.012
  92. Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. International Review of Cytology. 2007;264:65-163.  https://doi.org/10.1016/S0074-7696(07)64003-0
  93. Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harbor Perspectives in Biology. 2009; 1(3):a003053. https://doi.org/10.1101/cshperspect.a003053
  94. Ivanov AI, Naydenov NG. Dynamics and regulation of epithelial adherens junctions. Recent discoveries and controversies. International Review of Cell and Molecular Biology. 2013;303:27-99.  https://doi.org/10.1016/B978-0-12-407697-6.00002-7
  95. Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. The Journal of Cell Biology. 2011;195(7): 1185-1203. https://doi.org/10.1083/jcb.201106057
  96. Hatzfeld M, Keil R, Magin TM. Desmosomes and intermediate filaments: their consequences for tissue mechanics. Cold Spring Harbor Perspectives in Biology. 2017;9(6):a029157. https://doi.org/10.1101/cshperspect.a029157
  97. Kong W, McConalogue K, Khitin LM, Hollenberg MD, Payan DG, Böhm SK, Bunnett NW. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(16):8884-8889. https://doi.org/10.1073/pnas.94.16.8884
  98. Darmoul D, Marie JC, Devaud H, Gratio V, Laburthe M. Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2. British Journal of Cancer. 2001; 85(5):772-779.  https://doi.org/10.1054/bjoc.2001.1976
  99. Coelho AM, Vergnolle N, Guiard B, Fioramonti J, Bueno L. Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats. Gastroenterology. 2002;122(4): 1035-1047. https://doi.org/10.1053/gast.2002.32387
  100. Chin AC, Vergnolle N, MacNaughton WK, Wallace JL, Hollenberg MD, Buret AG. Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(19):11104-11109. https://doi.org/10.1073/pnas.1831452100
  101. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research. 2020;9:F1000 Faculty Rev-69.  https://doi.org/10.12688/f1000research.20510.1
  102. Krakowiak O, Nowak R. Mikroflora przewodu pokarmowego człowieka — znaczenie, rozwój, modyfikacje. Postępy Fitoterapii. 2015;3:193-200. 
  103. Naryzhny SN, Legina OK. Haptoglobin as a biomarker. Biomedicinskaya himiya. 2021;67(2):105-118. (In Russ.). https://doi.org/10.18097/PBMC20216702105
  104. Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS, Antalis TM, Vogel SN, Zhao A, Yang S, Arrietta MC, Meddings JB, Fasano A. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(39):16799-16804. https://doi.org/10.1073/pnas.0906773106
  105. Barmeyer C, Schulzke JD, Fromm M. Claudin-related intestinal diseases. Seminars in Cell and Developmental Biology. 2015;42:30-38.  https://doi.org/10.1016/j.semcdb.2015.05.006
  106. Linsalata M, Riezzo G, D’Attoma B, Clemente C, Orlando A, Russo F. Noninvasive biomarkers of gut barrier function identify two subtypes of patients suffering from diarrhoea predominant-IBS: a case-control study. BMC Gastroenterology. 2018;18(1):167.  https://doi.org/10.1186/s12876-018-0888-6
  107. Zhang YG, Xia Y, Lu R, Sun J. Inflammation and intestinal leakiness in older HIV+individuals with fish oil treatment. Genes and Diseases. 2018;5(3):220-225.  https://doi.org/10.1016/j.gendis.2018.07.001
  108. Pastor L, Langhorst J, Schröder D, Casellas A, Ruffer A, Carrillo J, Urrea V, Massora S, Mandomando I, Blanco J, Naniche D. Different pattern of stool and plasma gastrointestinal damage biomarkers during primary and chronic HIV infection. PLoS One. 2019;14(6):e0218000. https://doi.org/10.1371/journal.pone.0218000
  109. Ohlsson B, Orho-Melander M, Nilsson PM. Higher Levels of Serum Zonulin May Rather Be Associated with Increased Risk of Obesity and Hyperlipidemia, Than with Gastrointestinal Symptoms or Disease Manifestations. International Journal of Molecular Sciences. 2017;18(3):582.  https://doi.org/10.3390/ijms18030582
  110. Łoniewska B, Węgrzyn D, Adamek K, Kaczmarczyk M, Skonieczna-Żydecka K, Adler G, Jankowska A, Uzar I, Kordek A, Celewicz M, Łoniewski I. The Influence of Maternal-Foetal Parameters on Concentrations of Zonulin and Calprotectin in the Blood and Stool of Healthy Newborns during the First Seven Days of Life. An Observational Prospective Cohort Study. Journal of Clinical Medicine. 2019;8(4):47.  https://doi.org/10.3390/jcm8040473
  111. Scheffler L, Crane A, Heyne HO, Toenjes A, Schleinitz D, Ihling CH, Stumvoll M, Kovacs P, Heiker JT. Widely used commercial ELISA for human Zonulin reacts with Complement C3 rather than pre-Haptoglobin 2. bioRxiv. 2017;157578. https://doi.org/10.1101/157578
  112. Wegh CAM, de Roos NM, Hovenier R, Meijerink J, Besseling-van der Vaart I, van Hemert S, Witteman BJM. Intestinal Permeability Measured by Urinary Sucrose Excretion Correlates with Serum Zonulin and Faecal Calprotectin Concentrations in UC Patients in Remission. Journal of Nutrition and Metabolism. 2019;2019:2472754. https://doi.org/10.1155/2019/2472754
  113. Vojdani A, Vojdani E, Kharrazian D. Fluctuation of zonulin levels in blood vs stability of antibodies. World Journal of Gastroenterology. 2017;23(31):5669-5679. https://doi.org/10.3748/wjg.v23.i31.5669
  114. Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, Drago S, Congia M, Fasano A.Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut. 2003;52(2):218-223.  https://doi.org/10.1136/gut.52.2.218
  115. Thomas KE, Sapone A, Fasano A, Vogel SN. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease. Journal of Immunology. 2006;176(4):2512-2521. https://doi.org/10.4049/jimmunol.176.4.2512
  116. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, Rallabhandi P, Shea-Donohue T, Tamiz A, Alkan S, Netzel-Arnett S, Antalis T, Vogel SN, Fasano A. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135(1):194-204.e3.  https://doi.org/10.1053/j.gastro.2008.03.023
  117. Valitutti F, Fasano A. Breaking Down Barriers: How Understanding Celiac Disease Pathogenesis Informed the Development of Novel Treatments. Digestive Diseases and Sciences. 2019;64(7):1748-1758. https://doi.org/10.1007/s10620-019-05646-y
  118. Barbaro MR, Cremon C, Wrona D, Fuschi D, Marasco G, Stanghellini V, Barbara G. Non-celiac gluten sensitivity in the context of functional gastrointestinal disorders. Nutrients. 2020;12(12):3735. https://doi.org/10.3390/nu12123735
  119. Barengolts E, Green SJ, Chlipala GE, Layden BT, Eisenberg Y, Priyadarshini M, Dugas LR. Predictors of Obesity among Gut Microbiota Biomarkers in African American Men with and without Diabetes. Microorganisms. 2019;7(9):E320. https://doi.org/10.3390/microorganisms7090320
  120. Caviglia GP, Dughera F, Ribaldone DG, Rosso C, Abate ML, Pellicano R, Bresso F, Smedile A, Saracco GM, Astegiano M. Serum zonulin in patients with inflammatory bowel disease: a pilot study. Minerva Medica. 2019;110(2):95-100.  https://doi.org/10.23736/S0026-4806.18.05787-7
  121. Tatucu-Babet OA, Forsyth A, Owen E, Navarro-Perez D, Radcliffe J, Benheim D, Mendis H, Jois M, Itsiopoulos C, Tierney AC. Serum zonulin measured by enzyme-linked immunosorbent assay may not be a reliable marker of small intestinal permeability in healthy adults. Nutrition Research. 2020;78:82-92.  https://doi.org/10.1016/j.nutres.2020.05.003
  122. Mörkl S, Lackner S, Meinitzer A, Mangge H, Lehofer M, Halwachs B, Gorkiewicz G, Kashofer K, Painold A, Holl AK, Bengesser SA, Müller W, Holzer P, Holasek SJ. Affiliations expand: Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. European Journal of Nutrition. 2018;57(8):2985-2997. https://doi.org/10.1007/s00394-018-1784-0
  123. Sánchez-Alcoholado L, Ordóñez R, Otero A, Plaza-Andrade I, Laborda-Illanes A, Medina JA, Ramos-Molina B, Gómez-Millán J, Queipo-Ortuño MI. Gut Microbiota-Mediated Inflammation and Gut Permeability in Patients with Obesity and Colorectal Cancer. International Journal of Molecular Sciences. 2020;21(18):6782. https://doi.org/10.3390/ijms21186782
  124. Stenman LK, Lehtinen MJ, Meland N, Christensen JE, Yeung N, Saarinen MT, Courtney M, Burcelin R, Lähdeaho ML, Linros J, Apter D, Scheinin M, Kloster Smerud H, Rissanen A, Lahtinen S. Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults-Randomized Controlled Trial. EBioMedicine. 2016;13:190-200.  https://doi.org/10.1016/j.ebiom.2016.10.036
  125. Kim AS, Ko HJ. Plasma concentrations of zonulin are elevated in obese men with fatty liver disease. Diabetes, Metabolic Syndrome and Obesity. 2018;11:149-157.  https://doi.org/10.2147/DMSO.S163062
  126. Komarova oN, Khavkin AI. Correlation between Stress, Immunity and Intestinal Microbiota. Pediatricheskaya farmakologiya. 2020;17(1):18-24. (In Russ.). https://doi.org/10.15690/pf.v17i1.2078
  127. Dhillon AK, Kummen M, Trøseid M, Åkra S, Liaskou E, Moum B, Vesterhus M, Karlsen TH, Seljeflot I, Hov JR. Circulating markers of gut barrier function associated with disease severity in primary sclerosing cholangitis. Liver International. 2019;39(2):371-381.  https://doi.org/10.1111/liv.13979
  128. Camara-Lemarroy CR, Silva C, Greenfield J, Liu WQ, Metz LM, Yong VW. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Multiple Sclerosis. 2020;(11):1340-1350. https://doi.org/10.1177/1352458519863133
  129. Tsui FW, Tsui HW, Akram A, Haroon N, Inman RD. The genetic basis of ankylosing spondylitis: New insights into disease pathogenesis. The Application of Clinical Genetics. 2014;7:105-115.  https://doi.org/10.2147/TACG.S37325
  130. Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, Marshall M, Kenna TJ, Triolo G, Brown MA. Brief report: Intestinal dysbiosis in ankylosing spondylitis. Arthritis and Rheumatology. 2015;67(3):686-691.  https://doi.org/10.1002/art.38967
  131. Taurog JD, Chhabra A, Colbert RA. Ankylosing spondylitis and axial spondyloarthritis. The New England Journal of Medicine. 2016; 374(26):2563-2574. https://doi.org/10.1056/NEJMra1406182
  132. Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease. Trends in Endocrinology and Metabolism: TEM. 2019; 30(8):479-490.  https://doi.org/10.1016/j.tem.2019.05.008
  133. Hiromatsu Y, Satoh H, Amino N. Hashimoto’s thyroiditis: History and future outlook. Hormones. 2013;12(1):12-18.  https://doi.org/10.1007/BF03401282
  134. Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmunity Reviews. 2014;13(4-5): 391-397.  https://doi.org/10.1016/j.autrev.2014.01.007
  135. Cayres LCF, de Salis LVV, Rodrigues GSP, Lengert AVH, Biondi APC, Sargentini LDB, Brisotti JL, Gomes E, de Oliveira GLV. Detection of Alterations in the Gut Microbiota and Intestinal Permeability in Patients with Hashimoto Thyroiditis. Frontiers in Immunology. 2021;12:579140. https://doi.org/10.3389/fimmu.2021.579140
  136. Morshed SA, Latif R, Davies TF. Delineating the autoimmune mechanisms in Graves’ disease. Immunologic Research. 2012;54(1-3):191-203.  https://doi.org/10.1007/s12026-012-8312-8
  137. Subekti I, Pramono LA. Current diagnosis and management of Graves’ disease. Acta Medica indonesiana. 2018;50(2):177-182. 
  138. Cereijido M, Contreras RG, Flores-Benítez D, Flores-Maldonado C, Larre I, Ruiz A, Shoshani L. New diseases derived or associated with the tight junction. Archives of Medical Research. 2007;38(5):465-478.  https://doi.org/10.1016/j.arcmed.2007.02.003
  139. König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer RJ. Human intestinal barrier function in health and disease. Clinical and Translational Gastroenterology. 2016;7(10):e196. https://doi.org/10.1038/ctg.2016.54
  140. Pyzik A, Grywalska E, Matyjaszek-Matuszek B, Roli´nski J. Immune disorders in Hashimoto’s thyroiditis: What do we know so far? Journal of Immunology Research. 2015;2015:979167. https://doi.org/10.1155/2015/979167
  141. Mormile R. Celiac disease and Hashimoto’s thyroiditis: A shared plot? International Journal of Colorectal Disease. 2016;31(4):947.  https://doi.org/10.1007/s00384-015-2370-z
  142. Caio G, Riegler G, Patturelli M, Facchiano A, Magistris L, Sapone A. Pathophysiology of non-celiac gluten sensitivity: Where are we now? Minerva Gastroenterologica e Dietologica. 2017;63(1): 16-21.  https://doi.org/10.23736/S1121-421X.16.02346-1
  143. Wu M, Wu Y, Deng B, Li J, Cao H, Qu Y, Qian X, Zhong G. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget. 2016;7(51):85318-85331. https://doi.org/10.18632/oncotarget.13347
  144. Al-Ayadhi L, Zayed N, Bhat RS, Moubayed NMS, Al-Muammar MN, El-Ansary A. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: a systematic review. Gut Pathogens. 2021;13(1):54.  https://doi.org/10.1186/s13099-021-00448-y
  145. Dumitrescu L, Marta D, Dănău A, Lefter A, Tulbă D, Cozma L, Manole E, Gherghiceanu M, Ceafalan LC, Popescu BO. Serum and Fecal Markers of Intestinal Inflammation and Intestinal Barrier Permeability Are Elevated in Parkinson’s Disease. Frontiers in Neuroscience. 2021;15:689723. https://doi.org/10.3389/fnins.2021.689723
  146. Xu G, Strathearn L, Liu B, Bao W. Corrected prevalence of autism spectrum disorder among US children and adolescents. JAMA. 2018;319(5):505.  https://doi.org/10.1001/jama.2018.0001
  147. Baldini F, Hertel J, Sandt E, Thinnes CC, Neuberger-Castillo L, Pavelka L, Betsou F, Krüger R, Thiele I; NCER-PD Consortium. Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biology. 2020;18(1):62.  https://doi.org/10.1186/s12915-020-00775-7
  148. Lee HS, Lobbestael E, Vermeire S, Sabino J, Cleynen I. Inflammatory bowel disease and Parkinson’s disease: common pathophysiological links. Gut. 2021;70(2):408-417.  https://doi.org/10.1136/gutjnl-2020-322429
  149. Schwiertz A, Spiegel J, Dillmann U, Grundmann D, Bürmann J, Faßbender K, Schäfer KH, Unger MM. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Parkinsonism and Related Disorders. 2018;50:104-107.  https://doi.org/10.1016/j.parkreldis.2018.02.022
  150. Mulak A, Koszewicz M, Panek-Jeziorna M, Koziorowska-Gawron E, Budrewicz S. Fecal Calprotectin as a Marker of the Gut Immune System Activation Is Elevated in Parkinson’s Disease. Frontiers in Neuroscience. 2019;13:992.  https://doi.org/10.3389/fnins.2019.00992
  151. Houser MC, Chang J, Factor SA, Molho ES, Zabetian CP, Hill-Burns EM, Payami H, Hertzberg VS, Tansey MG. Stool immune profiles evince gastrointestinal inflammation in Parkinson’s disease. Movement Disorders. 2018;33(5):793-804.  https://doi.org/10.1002/mds.27326
  152. Skardelly M, Armbruster FP, Meixensberger J, Hilbig H. Expression of Zonulin, c-kit, and Glial Fibrillary Acidic Protein in Human Gliomas. Translational Oncology. 2009;2(3):117-120.  https://doi.org/10.1593/tlo.09115
  153. Dowling P, O’Driscoll L, Meleady P, Henry M, Roy S, Ballot J, Moriarty M, Crown J, Clynes M. 2-D difference gel electrophoresis of the lung squamous cell carcinoma versus normal sera demonstrates consistent alterations in the levels of ten specific proteins. Electrophoresis. 2007;28(23):4302-4310. https://doi.org/10.1002/elps.200700246
  154. Heo SH, Lee SJ, Ryoo HM, Park JY, Cho JY. Identification of putative serum glycoprotein biomarkers for human lung adenocarcinoma by multilectin affinity chromatography and LC-MS/MS. Proteomics. 2007;7(23):4292-4302. https://doi.org/10.1002/pmic.200700433
  155. Sun ZL, Zhu Y, Wang FQ, Chen R, Peng T, Fan ZN, Xu ZK, Miao Y. Serum proteomic-based analysis of pancreatic carcinoma for the identification of potential cancer biomarkers. Biochimica et Biophysica Acta. 2007;1774(6):764-771.  https://doi.org/10.1016/j.bbapap.2007.04.001
  156. Oh MK, Park HJ, Lee JH, Bae HM, Kim IS. Single chain precursor prohaptoglobin promotes angiogenesis by upregulating expression of vascular endothelial growth factor (VEGF) and VEGF receptor2. FEBS Letters. 2015;589(9):1009-1017. https://doi.org/10.1016/j.febslet.2015.03.006
  157. Hamrita B, Chahed K, Trimeche M, Guillier CL, Hammann P, Chaïeb A, Korbi S, Chouchane L. Proteomics-based identification of alpha1-antitrypsin and haptoglobin precursors as novel serum markers in infiltrating ductal breast carcinomas. Clinica Chimica Acta. 2009;404(2):111-118.  https://doi.org/10.1016/j.cca.2009.03.033
  158. Russo F, Linsalata M, Clemente C, D’Attoma B, Orlando A, Campanella G, Giotta F, Riezzo G. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60) on the intestinal barrier function and gut peptides in breast cancer patients: an observational study. BMC Cancer. 2013;13:56.  https://doi.org/10.1186/1471-2407-13-56
  159. Scheffler L, Crane A, Heyne H, Tönjes A, Schleinitz D, Ihling CH, Stumvoll M, Freire R, Fiorentino M, Fasano A, Kovacs P, Heiker JT. Widely Used Commercial ELISA Does Not Detect Precursor of Haptoglobin2, but Recognizes Properdin as a Potential Second Member of the Zonulin Family. Frontiers in Endocrinology. 2018;9:22.  https://doi.org/10.3389/fendo.2018.00022
  160. Ajamian M, Steer D, Rosella G, Gibson PR. Serum zonulin as a marker of intestinal mucosal barrier function: May not be what it seems. PLoS One. 2019;14(1):e0210728. https://doi.org/10.1371/journal.pone.0210728
  161. Hałasa M, Maciejewska D, Baśkiewicz-Hałasa M, Machaliński B, Safranow K, Stachowska E. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes. Nutrients. 2017;9(4):370.  https://doi.org/10.3390/nu9040370
  162. Jiang T, Gao X, Wu C, Tian F, Lei Q, Bi J, Xie B, Wang HY, Chen S, Wang X. Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients. 2016;8(3):126.  https://doi.org/10.3390/nu8030126
  163. Xiao L, Cui T, Liu S, Chen B, Wang Y, Yang T, Li T, Chen J. Vitamin A supplementation improves the intestinal mucosal barrier and facilitates the expression of tight junction proteins in rats with diarrhea. Nutrition. 2019;57:97-108.  https://doi.org/10.1016/j.nut.2018.06.007
  164. Ramezani Ahmadi A, Sadeghian M, Alipour M, Ahmadi Taheri S, Rahmani S, Abbasnezhad A. The Effects of Probiotic/Synbiotic on Serum Level of Zonulin as a Biomarker of Intestinal Permeability: A Systematic Review and Meta-Analysis. Iranian Journal of Public Health. 2020;49(7):1222-1231. https://doi.org/10.18502/ijph.v49i7.3575
  165. Liu Z, Li C, Huang M, Tong C, Zhang X, Wang L, Peng H, Lan P, Zhang P, Huang N, Peng J, Wu X, Luo Y, Qin H, Kang L, Wang J. Positive regulatory effects of perioperative probiotic treatment on postoperative liver complications after colorectal liver metastases surgery: a double-center and double-blind randomized clinical trial. BMC Gastroenterology. 2015;15:34.  https://doi.org/10.1186/s12876-015-0260-z
  166. Liu ZH, Huang MJ, Zhang XW, Wang L, Huang NQ, Peng H, Lan P, Peng JS, Yang Z, Xia Y, Liu WJ, Yang J, Qin HL, Wang JP. The effects of perioperative probiotic treatment on serum zonulin concentration and subsequent postoperative infectious complications after colorectal cancer surgery: a double-center and double-blind randomized clinical trial. The American Journal of Clinical Nutrition. 2013;97(1):117-126.  https://doi.org/10.3945/ajcn.112.040949
  167. Horvath A, Rainer F, Bashir M, Leber B, Schmerboeck B, Klymiuk I, Groselj-Strele A, Durdevic M, Freedberg DE, Abrams JA, Fickert P, Stiegler P, Stadlbauer V. Biomarkers for oralization during long-term proton pump inhibitor therapy predict survival in cirrhosis. Scientific Reports. 2019;9(1):12000. https://doi.org/10.1038/s41598-019-48352-5
  168. Pietrukaniec M, Migacz M, Żak-Gołąb A, Olszanecka-Glinianowicz M, Chudek J, Duława J, Holecki M. Zonulin Family Peptide Levels in Ascites and Serum in Patients with Liver Cirrhosis: A Preliminary Study. Disease Markers. 2019;2019:2804091. https://doi.org/10.1155/2019/2804091
  169. Khaleghi S, Ju JM, Lamba A, Murray JA. The potential utility of tight junction regulation in celiac disease: Focus on larazotide acetate. Therapeutic Advances in Gastroenterology. 2016;9(1):37-49.  https://doi.org/10.1177/1756283X15616576
  170. Di Micco S, Musella S, Sala M, Scala MC, Andrei G, Snoeck R, Bifulco G, Campiglia P, Fasano A. Peptide Derivatives of the Zonulin Inhibitor Larazotide (AT1001) as Potential AntiSARS-CoV-2: Molecular Modelling, Synthesis and Bioactivity Evaluation. International Journal of Molecular Sciences. 2021; 22(17):9427. https://doi.org/10.3390/ijms22179427

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.