The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Bykanov A.E.

Burdenko Neurosurgical Center

Bezbabicheva T.S.

Burdenko Neurosurgical Center

Pitskhelauri D.I.

Burdenko Neurosurgical Center

Surgical treatment of glial tumors of the frontal lobe. Current state of the problem. Part I: motor functional system

Authors:

Bykanov A.E., Bezbabicheva T.S., Pitskhelauri D.I.

More about the authors

Journal: Burdenko's Journal of Neurosurgery. 2025;89(5): 115‑121

Read: 287 times


To cite this article:

Bykanov AE, Bezbabicheva TS, Pitskhelauri DI. Surgical treatment of glial tumors of the frontal lobe. Current state of the problem. Part I: motor functional system. Burdenko's Journal of Neurosurgery. 2025;89(5):115‑121. (In Russ., In Engl.)
https://doi.org/10.17116/neiro202589051115

References:

  1. Banerjee K, Núñez FJ, Haase S, McClellan BL, Faisal SM, Carney SV, Yu J, Alghamri MS, Asad AS, Candia AJN, Varela ML, Candolfi M, Lowenstein PR, Castro MG. Current Approaches for Glioma Gene Therapy and Virotherapy. Frontiers in Molecular Neuroscience. 2021;14:621831. https://doi.org/10.3389/fnmol.2021.621831
  2. Larjavaara S, Mäntylä R, Salminen T, Haapasalo H, Raitanen J, Jääskeläinen J, Auvinen A. Incidence of gliomas by anatomic location. Neuro-Oncology. 2007;9(3):319-325.  https://doi.org/10.1215/15228517-2007-016
  3. Low JT, Ostrom QT, Cioffi G, Neff C, Waite KA, Kruchko C, Barnholtz-Sloan JS. Primary brain and other central nervous system tumors in the United States (2014-2018): A summary of the CBTRUS statistical report for clinicians. Neuro-Oncology Practice. 2022;9(3):165-182.  https://doi.org/10.1093/nop/npac015
  4. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro-Oncology. 2020;22(12 Suppl 2):iv1-iv96. https://doi.org/10.1093/neuonc/noaa200
  5. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro-Oncology. 2022;24(5):v1-v95.  https://doi.org/10.1093/neuonc/noac202
  6. Dum RP, Strick PL. Motor areas in the frontal lobe of the primate. Physiology & Behavior. 2002;77(4-5):677-682.  https://doi.org/10.1016/s0031-9384(02)00929-0
  7. Rizzolatti G, Fogassi L, Gallese V. Motor and cognitive functions of the ventral premotor cortex. Current Opinion in Neurobiology. 2002;12(2):149-154.  https://doi.org/10.1016/s0959-4388(02)00308-2
  8. Sughrue ME. The Glioma Book. 2019th ed. Thieme Verlag; 2019. https://doi.org/10.1055/b-006-160177
  9. Laplane D, Talairach J, Meininger V, Bancaud J, Orgogozo JM. Clinical consequences of corticectomies involving the supplementary motor area in man. Journal of the Neurological Sciences. 1977;34(3):301-314.  https://doi.org/10.1016/0022-510x(77)90148-4
  10. Rossi M, Fornia L, Puglisi G, Leonetti A, Zuccon G, Fava E, Milani D, Casarotti A, Riva M, Pessina F, Cerri G, Bello L. Assessment of the praxis circuit in glioma surgery to reduce the incidence of postoperative and long-term apraxia: a new intraoperative test. Journal of Neurosurgery. 2019;130(1):17-27.  https://doi.org/10.3171/2017.7.JNS17357
  11. Cerri G, Shimazu H, Maier MA, Lemon RN. Facilitation from ventral premotor cortex of primary motor cortex outputs to macaque hand muscles. Journal of Neurophysiology. 2003;90(2):832-842.  https://doi.org/10.1152/jn.01026.2002
  12. Fornia L, Rossi M, Rabuffetti M, Leonetti A, Puglisi G, Viganò L, Simone L, Howells H, Bellacicca A, Bello L, Cerri G. Direct Electrical Stimulation of Premotor Areas: Different Effects on Hand Muscle Activity during Object Manipulation. Cerebral Cortex. 2020;30(1):391-405.  https://doi.org/10.1093/cercor/bhz139
  13. Johnson PB, Ferraina S, Bianchi L, Caminiti R. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cerebral Cortex. 1996;6(2):102-119.  https://doi.org/10.1093/cercor/6.2.102
  14. Pesaran B, Nelson MJ, Andersen RA. Dorsal premotor neurons encode the relative position of the hand, eye, and goal during reach planning. Neuron. 2006;51(1):125-134.  https://doi.org/10.1016/j.neuron.2006.05.025
  15. Vingerhoets G, Honoré P, Vandekerckhove E, Nys J, Vandemaele P, Achten E. Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience. 2010;169(3):1158-1167. https://doi.org/10.1016/j.neuroscience.2010.05.080
  16. Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG. Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain. 1997;120(Pt 9):1587-1602. https://doi.org/10.1093/brain/120.9.1587
  17. Brinkman C. Supplementary motor area of the monkey’s cerebral cortex: short- and long-term deficits after unilateral ablation and the effects of subsequent callosal section. Journal of Neuroscience. 1984;4(4):918-929.  https://doi.org/10.1523/JNEUROSCI.04-04-00918.1984
  18. Kim YH, Kim CH, Kim JS, Lee SK, Han JH, Kim CY, Chung CK. Risk factor analysis of the development of new neurological deficits following supplementary motor area resection. Journal of Neurosurgery. 2013;119(1):7-14.  https://doi.org/10.3171/2013.3.JNS121492
  19. Krainik A, Lehéricy S, Duffau H, Vlaicu M, Poupon F, Capelle L, Cornu P, Clemenceau S, Sahel M, Valery CA, Boch AL, Mangin JF, Bihan DL, Marsault C. Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology. 2001;57(5):871-878.  https://doi.org/10.1212/wnl.57.5.871
  20. Krainik A, Lehéricy S, Duffau H, Capelle L, Chainay H, Cornu P, Cohen L, Boch AL, Mangin JF, Le Bihan D, Marsault C. Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology. 2003;60(4):587-594.  https://doi.org/10.1212/01.wnl.0000048206.07837.59
  21. Russell SM, Kelly PJ. Incidence and clinical evolution of postoperative deficits after volumetric stereotactic resection of glial neoplasms involving the supplementary motor area. Neurosurgery. 2003;52(3):506-516.  https://doi.org/10.1227/01.neu.0000047670.56996.53
  22. Vassal M, Charroud C, Deverdun J, Le Bars E, Molino F, Bonnetblanc F, Boyer A, Dutta A, Herbet G, Moritz-Gasser S, Bonafé A, Duffau H, de Champfleur NM. Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area. Journal of Neurosurgery. 2017;126(4):1181-1190. https://doi.org/10.3171/2016.4.JNS152484
  23. Davidoff RA. The pyramidal tract. Neurology. 1990;40(2):332-339.  https://doi.org/10.1212/wnl.40.2.332
  24. Ebeling U, Reulen HJ. Subcortical topography and proportions of the pyramidal tract. Acta Neurochirurgica. 1992;118(3-4):164-171.  https://doi.org/10.1007/BF01401303
  25. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience. 2002;3(3):201-215.  https://doi.org/10.1038/nrn755
  26. Halsband U, Passingham R. The role of premotor and parietal cortex in the direction of action. Brain Research. 1982;240(2):368-372.  https://doi.org/10.1016/0006-8993(82)90239-6
  27. Leiguarda RC, Marsden CD. Limb apraxias: higher-order disorders of sensorimotor integration. Brain. 2000;123(5):860-879.  https://doi.org/10.1093/brain/123.5.860
  28. Bykanov AE, Pitskhelauri DI, Batalov AI, Pronin IN, Shkarubo MA, Dobrovolskiyi GF, Kobiakov GL, Buklina SB, Puchkov VL, Zakharova NE, Smirnov AS, Sanikidze AZ, Gol’bin DA, Pogosbekyan EL, Kudieva ES, Shkatova AM, Potapov AA. Surgical anatomy of the peri-insular association tracts. Part I. The superior longitudinal fascicle system. Burdenko’s Journal of Neurosurgery. 2017;81(1):26-38.  https://doi.org/10.17116/neiro201780726-38
  29. De Pisapia N, Sandrini M, Braver TS, Cattaneo L. Integration in Working Memory: A Magnetic Stimulation Study on the Role of Left Anterior Prefrontal Cortex. PLoS ONE. 2012;7(8):e43731. https://doi.org/10.1371/journal.pone.0043731
  30. Knapen T, Brascamp J, Pearson J, van Ee R, Blake R. The role of frontal and parietal brain areas in bistable perception. Journal of Neuroscience. 2011;31(28):10293-10301. https://doi.org/10.1523/JNEUROSCI.1727-11.2011
  31. Catani M, Thiebaut de Schotten M. Atlas of Human Brain Connections. OUP Oxford; 2012.
  32. Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H. Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Structure & Function. 2015;220(6):3399-3412. https://doi.org/10.1007/s00429-014-0863-0
  33. Rojkova K, Volle E, Urbanski M, Humbert F, Dell’Acqua F, Thiebaut de Schotten M. Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study. Brain Structure & Function. 2016;221(3):1751-1766. https://doi.org/10.1007/s00429-015-1001-3
  34. Dick AS, Garic D, Graziano P, Tremblay P. The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex. 2019;111: 148-163.  https://doi.org/10.1016/j.cortex.2018.10.015
  35. La Corte E, Eldahaby D, Greco E, Aquino D, Bertolini G, Levi V, Ottenhausen M, Demichelis G, Romito LM, Acerbi F, Broggi M, Schiariti MP, Ferroli P, Bruzzone MG, Serrao G. The Frontal Aslant Tract: A Systematic Review for Neurosurgical Applications. Frontiers in Neurology. 2021;12:641586. https://doi.org/10.3389/fneur.2021.641586

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.