The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Trufanov S.V.

Research Institute of Eye Diseases

Fisenko N.V.

Krasnov Research Institute of Eye Diseases

Molecular genetic aspects of Fuchs’ endothelial corneal dystrophy pathogenesis

Authors:

Trufanov S.V., Fisenko N.V.

More about the authors

Journal: Russian Annals of Ophthalmology. 2020;136(5): 260‑267

Read: 2605 times


To cite this article:

Trufanov SV, Fisenko NV. Molecular genetic aspects of Fuchs’ endothelial corneal dystrophy pathogenesis. Russian Annals of Ophthalmology. 2020;136(5):260‑267. (In Russ.)
https://doi.org/10.17116/oftalma2020136052260

Recommended articles:
Upda­ted classification of kera­titis and corneal erosion. Russian Annals of Ophthalmology. 2025;(5):78-80
Olmsted syndrome caused by hete­rozygous missense muta­tion in TRPV3 gene. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(3):297-303

References:

  1. Fuchs E. Dystrophia epithelialis corneae. Albrecht Von Graefes Arch. Clin. Exp. Ophthalmol. 1910;76:478-508. 
  2. Iliff BW, Riazuddin SA, Gottsch JD. The genetics of Fuchs′ corneal dystrophy. Expert Rev Ophthalmol. 2012;7(4):363-375.  https://doi.org/10.1586/eop.12.39
  3. Trufanov SV, Salovarova EP, Malozhen SA, Bagh RZ. Fuchs endothelial corneal dystrophy. Vestnik oftal’mologii. 2017;133(6):106-112. (In Russ.). https://doi.org/10.17116/oftalma20171336106-112
  4. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016;134(2):167-173.  https://doi.org/10.1001/jamaophthalmol.2015.4776
  5. DelMonte DW, Terry Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588-598.  https://doi.org/10.1016/j.jcrs.2010.12.037
  6. Johnson DH, Bourne WM, Campbell RJ. The ultrastructure of Descemet’s membrane. I. changes with age in normal corneas. Arch Ophthalmol. 1982; 100(12):1942-1947. https://doi.org/10.1001/archopht.1982.01030040922011
  7. Kreutziger GO. Lateral membrane morphology and gap junction structure in rabbit corneal endothelium. Exp. Eye Res. 1976;23(3):285-293.  https://doi.org/10.1016/0014-4835(76)90129-9
  8. Stiemke MM, Edelhauser HF, Geroski DH. The developing corneal endothelium: correlation of morphology, hydration and Na/K ATPase pump site density. Curr Eye Res. 1991;10:145-156.  https://doi.org/10.3109/02713689109001742
  9. Choi I. SLC4A Transporters. Curr Top Membr. 2012;70:77-103.  https://doi.org/10.1016/B978-0-12-394316-3.00003-X
  10. Jalimarada SS, Ogando DG, Vithana EN, Bonanno JA. Ion transport function of SLC4A11 in corneal endothelium. Invest Ophthalmol Vis Sci. 2013; 54:4330-4340. https://doi.org/10.1167/iovs.13-11929
  11. Bonanno JA. Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res. 2012;95(1):2-7.  https://doi.org/10.1016/j.exer.2011.06.004
  12. Xia D, Zhang S, Nielsen E, Ivarsen AR, Liang C, Li Q, Thomsen K, Hjortdal JO, Dong M. The ultrastructures and mechanical properties of the Descement’s membrane in Fuchs endothelial corneal dystrophy. Sci Rep. 2016; 6:23096. https://doi.org/10.1038/srep23096
  13. Jalimarada SS, Ogando DG, Bonanno JA. Loss of ion transporters and increased unfolded protein response in Fuchs’ dystrophy. Molecular Vision. 2014;20:1668-1679.
  14. Torricelli AA, Wilson SE. Cellular and extracellular matrix modulation of corneal stromal opacity. Experimental Eye Research. 2014;129:151-160.  https://doi.org/10.1016/j.exer.2014.09.013
  15. Biswas S, Munier FL, Yardley J, Hart-Holden N, Perveen R, Cousin P, et al. Missense mutations in COL8A2, the gene encoding the α2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet. 200;10(21):2415-2423. https://doi.org/10.1093/hmg/10.21.2415
  16. Gottsch JD, Sundin OH, Liu SH, Jun AS, Broman KW, Stark WJ, et al. Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of Fuchs corneal dystrophy. Invest Ophthalmol Vis Sci. 2005;46(6):1934-1939. https://doi.org/10.1167/iovs.04-0937
  17. Liskova P, Prescott Q, Bhattacharya SS, Tuft SJ. British family with early-onset Fuchs’ endothelial corneal dystrophy associated with p.L450W mutation in the COL8A2 gene. Br J Ophthalmol. 2007;91(12):1717-1718. https://doi.org/10.1136/bjo.2007.115154
  18. Gottsch JD, Zhang C, Sundin OH, Bell WR, Stark WJ, Green WR. Fuchs corneal dystrophy: aberrant collagen distribution in an L450W mutant of the COL8A2 gene. Invest Ophthalmol Vis Sci. 2005;46(12):4504-4511. https://doi.org/10.1167/iovs.05-0497
  19. Mok J, Kim H, Joo C. Q455V mutation in COL8A2 is associated with Fuchs’ corneal dystrophy in Korean patients. Eye (Lond.). 2009;23(4):895-903.  https://doi.org/10.1038/eye.2008.116
  20. Sundin OH, Jun AS, Broman KW, Liu SH, Sheehan SE, Vito E, et al. Linkage of late-onset Fuchs corneal dystrophy to a novel locus at 13pTel-13q12.13. Invest Ophthalmol Vis Sci. 2006;47:140-145.  https://doi.org/10.1167/iovs.05-0578
  21. Sundin OH, Broman KW, Chang HH, Vito E, Stark WJ, Gottsch JD. A common locus for late-onset Fuchs corneal dystrophy maps to 18q21.2-q21.32. Ophthalmol Vis Sci. 2006;47:3919-3926. https://doi.org/10.1167/iovs.05-1619
  22. Riazuddin SA, Parker DS, McGlumphy EJ, Oh EC, Iliff BW, Schmedt T, et al. Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. Am J Hum Genet. 2012;90:533-539.  https://doi.org/10.1016/j.ajhg.2012.01.013
  23. Rao BS, Ansar S, Arokiasamy T, Sudhir RR, Umashankar V, Rajagopal R, et al. Analysis of candidate genes ZEB1 and LOXHD1 in late-onset Fuchs’ endothelial corneal dystrophy in an Indian cohort. Ophthalmic Genetics. 2018;39(4):443-449.  https://doi.org/10.1080/13816810.2018.1474367
  24. Riazuddin SA, Eghrari AO, Al-Saif A, Davey L, Meadows DN, Katsanis N, et al. Linkage of a mild late-onset phenotype of Fuchs corneal dystrophy to a novel locus at 5q33.1-q35.2. Invest Ophthalmol Vis Sci. 2009;50:5667-5671. https://doi.org/10.1167/iovs.09-3764
  25. Riazuddin SA, Zaghloul NA, Al-Saif A, Davey L, Diplas BH, Meadows DN, et al. Missense mutations in TCF8 cause late-onset Fuchs corneal dystrophy and interact with FCD4 on chromosome 9p. Am J Hum Genet. 2010;86(1):45-53.  https://doi.org/10.1016/j.ajhg.2009.12.001
  26. Okumura N, Minamiyama R, Ho L, Kay EP, Kawasaki S, Tourtas T, et al. Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. Laboratory Investigation. 2015 95:1291-1304. https://doi.org/10.1038/labinvest.2015.111
  27. Chung DD, Frausto RF, Ann LB, Jang MS, Aldave AJ Functional impact of ZEB1 mutations associated with posterior polymorphous and Fuchs’ endothelial corneal dystrophies. Invest Ophthalmol Vis Sci. 2014;55(10):6159-6166. https://doi.org/10.1167/iovs.14-15247
  28. Gupta R, Kumawat BL, Paliwal P, Tandon R, Sharma N, Sen S, et al. Association of ZEB1 and TCF4 rs613872 changes with late onset Fuchs endothelial corneal dystrophy in patients from northern India. Molecular Vision. 2015;21:1252-1260.
  29. Sobrado VR, Moreno-Bueno G, Cubillo E, Holt LJ, Nieto MA, Portillo F, et al. The class I bHLH factors E2-2A and E2-2B regulate EMT. J Cell Sci. 2009;122(Pt 7):1014-1024. https://doi.org/10.1242/jcs.028241
  30. Murre C, Bain G, van Dijk MA, Engel I, Furnari BA, Massari ME, et al. Structure and function of helix-loop-helix proteins. Biochim Biophys Acta. 1994;1218(2):129-135.  https://doi.org/10.1016/0167-4781(94)90001-9
  31. Baratz KH, Tosakulwong N, Ryu E, Brown WL, Branham K, Chen W, et al. E2-2 protein and Fuchs’s corneal dystrophy. N Engl J Med. 2010;363(11): 1016-1024. https://doi.org/10.1056/NEJMoa1007064
  32. Wieben ED, Aleff, RA, Eckloff BW, Atkinson EJ, Baheti, S, Middha S, et al. Comprehensive assessment of genetic variants within TCF4 in Fuchs’ endothelial corneal dystrophy. Invest Ophthal Vis Sci. 2014;55:6101-6107. https://doi.org/10.1167/iovs.14-14958
  33. Mootha VV, Gong X, Ku H, Xing C. Association and familial segregation of CTG18.1 trinucleotide repeat expansion of TCF4 gene in Fuchs’ endothelial corneal dystrophy. Invest Ophthal Vis Sci. 2014;55:33-42.  https://doi.org/10.1167/iovs.13-12611
  34. Riazuddin SA, McGlumphy EJ, Yeo WS, Wang J, Katsanis N, Gottsch JD. Replication of the TCF4 intronic variant in late-onset Fuchs corneal dystrophy and evidence of independence from the FCD2 locus. Invest Ophthalmol Vis Sci. 201;52:2825-2829. https://doi.org/10.1167/iovs.10-6497
  35. Li YJ, Minear MA, Rimmler J, Zhao B, Balajonda E, Hauser MA, et al. Replication of TCF4 through association and linkage studies in late-onset Fuchs endothelial corneal dystrophy. PLoS ONE. 2011;6(4):e18044. https://doi.org/10.1371/journal.pone.0018044
  36. Kuot A, Hewitt AW, Griggs K, Klebe S, Mills R, Jhanji V, et al. Association of TCF4 and CLU polymorphisms with Fuchs’ endothelial dystrophy and implication of CLU and TGFBI proteins in the disease process. European Journal of Human Genetics. 2012;20:632-638.  https://doi.org/10.1038/ejhg.2011.248
  37. Thalamuthu A, Khor CC, Venkataraman D, Koh LW, Tan DTH, Aung T, et al. Association of TCF4 gene polymorphisms with Fuchs corneal dystrophy in the Chinese. Invest Ophthalmol Vis Sci. 2011;52(8):5573-5578. https://doi.org/10.1167/iovs.11-7568
  38. Breschel TS, McInnis MG, Margolis RL, Sirugo G, Corneliussen B, Simpson SG, et al. A novel, heritable, expanding CTG repeat in an intron of the SEF2-1 gene on chromosome 18q21.1. Hum Mol Genet. 1997;6(11):1855-1863. https://doi.org/10.1093/hmg/6.11.1855
  39. Wieben ED, Aleff RA, Tosakulwong N, Butz ML, Highsmith WE, Edwards AO, et al. A common trinucleotide repeat expansion within the Transcription Factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS ONE. 2012;7(11):e49083. https://doi.org/10.1371/journal.pone.0049083
  40. Kuot A, Hewitt AW, Snibson GR, Souzeau E, Mills R, Craig JE, et al. TGC repeat expansion in the TCF4 gene increases the risk of Fuchs’ endothelial corneal dystrophy in Australian cases. PLoS ONE. 2017;12(8):e0183719. https://doi.org/10.1371/journal.pone.0183719
  41. Nanda GG, Padhy B, Samal S, Das S, Alone DP. Genetic association of TCF4 intronic polymorphisms, CTG18.1 and rs17089887, with Fuchs’ endothelial corneal dystrophy in an Indian population. Invest Ophthalmol Vis Sci. 2014;55:7674-7680. https://doi.org/10.1167/iovs.14-15297
  42. Foja S, Luther M, Hoffmann K, Rupprecht A, Gruenauer-Kloevekorn C. CTG18.1 repeat expansion may reduce TCF4 gene expression in corneal endothelial cells of German patients with Fuchs’ dystrophy. Graefes Arch Clin Exp Ophthalmol. 2017;255(8):1621-1631. https://doi.org/10.1007/s00417-017-3697-7
  43. Malyugin BE, Antonova OP, Skorodumova LO, Sharova EI, Selezneva OV, Danilenko SA, et al. The study of genetic markers associated with primary endothelial corneal dystrophy (Fuchs). Oftal’mohirurgija. 2016;4:44-50. (In Russ.).
  44. Papanyan S, Astakhov S, Nazarov V, Lapin S, Novikov S, Riks I i dr. Expansion of trinucleotide CTG repeats in the TCF4 gene as a marker of Fuchs’ endothelial corneal dystrophy. Oftal’mologicheskie vedomosti. 2019;12(2):11-18. (In Russ.). https://doi.org/10.17816/OV12211-18
  45. Gottsch JD, Bowers AL, Margulies EH, Seitzman GD, Kim SW, Saha S, et al. Serial analysis of gene expression in the corneal endothelium of Fuchs’ dystrophy. Invest Ophthalmol Vis Sci. 2003;44:594-599.  https://doi.org/10.1167/iovs.02-0300
  46. Vilas GL, Loganathan SK, Liu J, Riau AK, Young JD, Mehta JS, et al. Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases. Human Molecular Genetics. 2013;22(22):4579-4590. https://doi.org/10.1093/hmg/ddt307
  47. Vithana EN, Morgan PE, Ramprasad V, Tan DT, Yong VH, Venkataraman D, et al. SLC4A11 mutations in Fuchs endothelial corneal dystrophy. Hum Mol Genet. 2008;17(5):656-666.  https://doi.org/10.1093/hmg/ddm337
  48. Riazuddin SA, Vithana EN, Seet L, Liu Y, Al-Saif A, Koh LW, et al. Missense mutations in the sodium borate cotransporter SLC4A11 cause late-onset Fuchs corneal dystrophy. Hum Mutat. 2010;31(11):1261-1268. https://doi.org/10.1002/humu.21356
  49. Soumittra N, Loganathan SK, Madhavan D, Ramprasad VL, Arokiasamy T, Sumathi S, et al. Biosynthetic and functional defects in newly identified SLC4A11 mutants and absence of COL8A2 mutations in Fuchs endothelial corneal dystrophy. J Hum Genet. 2014;59(8):444-453.  https://doi.org/10.1038/jhg.2014.55
  50. Riazuddin SA, Vasanth S, Katsanis N, Gottsch JD. Mutations in AGBL1 cause dominant late-onset Fuchs corneal dystrophy and alter protein-protein interaction with TCF4. Am J Hum Genet. 2013;93:758-764.  https://doi.org/10.1016/j.ajhg.2013.08.010
  51. Afshari NA, Igo RP Jr, Morris NJ, Stambolian D, Sharma S, Pulagam VL, et al. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat Commun. 2017;8:14898. https://doi.org/10.1038/ncomms14898

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.