The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Semenova N.S.

Fakul'tet fundamental'noĭ meditsiny Moskovskogo gosudarstvennogo universiteta im. M.V. Lomonosova

Larichev A.V.

Lomonosov Moscow State University, GSP-1, 1 Leninskie Gory, Moscow, 119991, Russian Federation

Akopian V.S.

Fakul'tet fundamental'noĭ meditsiny Moskovskogo gosudarstvennogo universiteta im. M.V. Lomonosova

Swept source optical coherence tomography: a technology review

Authors:

Semenova N.S., Larichev A.V., Akopian V.S.

More about the authors

Journal: Russian Annals of Ophthalmology. 2020;136(1): 111‑116

Read: 5646 times


To cite this article:

Semenova NS, Larichev AV, Akopian VS. Swept source optical coherence tomography: a technology review. Russian Annals of Ophthalmology. 2020;136(1):111‑116. (In Russ.)
https://doi.org/10.17116/oftalma2020136011111

Recommended articles:
Choroidal neovascularization asso­ciated with choroidal nevi. Russian Annals of Ophthalmology. 2025;(1):104-112

References:

  1. Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57:OCT1–OCT13. https://doi.org/10.1167/iovs.16-19963
  2. Swanson EA, Huang D, Fujimoto JG, Puliafito CA, Lin CP, Schuman JS, inventors; Massachusetts Institute of Technology, assignee. Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample. United States Patent 5,321,501. June 14, 1994
  3. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22:340-342. https://doi.org/10.1364/OL.22.000340
  4. Yun SH, Tearney GJ, Bouma BE, et al. High-speed spectral-domain optical coherence tomography at 1.3 lm wavelength. Opt Exp. 2003;11:3598-3604. https://doi.org/10.1364/OE.11.003598
  5. Huber R, Wojtkowski M, Fujimoto JG. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt Exp. 2006;14:3225-3237. https://doi.org/10.1364/OE.14.003225
  6. Semenova N. Opticheskaya kogerentnaya tomografiya: ot spektralnoy k swept source. Pod. red. Akopyan V. M.: Pechatniy dom Magistral; 2019. (In Russ.). http://ssoct.ru/atlas
  7. Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66-100. https://doi.org/10.1016/j.preteyeres.2017.07.00
  8. Kolb JP, Pfeiffer T, Eibl M, et al. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates. Biomed Opt Express. 2017;9(1):120-130. https://doi.org/10.1364/BOE.9.000120
  9. An L, Li P, Shen TT, et al. High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A lines per second. Biomed Opt Express. 2011;2(10):2770-2783. https://doi.org/10.1364/BOE.2.002770
  10. Potsaid B, Gorczynska I, Srinivasan VJ, et al. Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt Express. 2008;16(19):15149-15169. https://doi.org/10.1364/OE.16.015149
  11. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144-68. https://doi.org/10.1016/j.preteyeres.2009.12.002
  12. Jin P, Zou H, Zhu J, et al. Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by Swept-Source Optical Coherence Tomography. Am J Ophthalmol. 2016;168:164-176. https://doi.org/10.1016/j.ajo.2016.05.008
  13. Moussa M, Sabry D, Soliman W. Macular choroidal thickness in normal Egyptians measured by swept source optical coherence tomography. BMC Ophthalmol. 2016;16:138. https://doi.org/10.1186/s12886-016-0314-1
  14. Yumusak E, Ornek K, Durmaz SA, et al. Choroidal thickness in obese women. BMC Ophthalmol. 2016;16(1):48. https://doi.org/10.1186/s12886-016-0227-z
  15. Tan KA, Gupta P, Agarwal A, et al. State of science: Choroidal thickness and systemic health. Surv Ophthalmol. 2016;61(5):566-581. https://doi.org/10.1016/j.survophthal.2016.02.007
  16. Karalezli A, Eroglu FC, Kivanc T, et al. Evaluation of choroidal thickness using spectral-domain optical coherence tomography in patients with severe obstructive sleep apnea syndrome: a comparative study. Int J Ophthalmol. 2014;7(6):1030-1034. https://doi.org/10.3980/j.issn.2222-3959.2014.06.22
  17. Kinoshita T, Mitamura Y, Shinomiya K, et al. Diurnal variations in luminal and stromal areas of choroid in normal eyes. Br J Ophthalmol. 2017;101(3):360-364. https://doi.org/10.1136/bjophthalmol-2016-308594
  18. Wakatsuki Y, Shinojima A, Kawamura A, et al. Correlation of Aging and Segmental Choroidal Thickness Measurement using Swept Source Optical Coherence Tomography in Healthy Eyes. PLoS One. 2015;10(12):e0144156. https://doi.org/10.1371/journal.pone.0144156
  19. Sander B, Larsen M, Thrane L, et al. Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol. 2005; 89(2): 207–212. https://doi.org/10.1136/bjo.2004.045989
  20. Wang Z, Lee HC, Vermeulen D, et al. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection. Biomed Opt Express. 2015;6(7):2562-2574. https://doi.org/10.1364/BOE.6.002562
  21. Miller AR, Roisman L, Zhang Q, et al. Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization. Invest Ophthalmol Vis Sci. 2017;58(3):1499-1505. https://doi.org/10.1167/iovs.16-20969
  22. Tan CS, Chan JC, Cheong KX, et al. Comparison of retinal thicknesses measured using swept-source and spectral-domain optical coherence tomography devices. Ophthalmic Surg Lasers Imaging Retina. 2015;46(2):172-179. https://doi.org/10.3928/23258160-20150213-23
  23. Zafar S, Siddiqui MR, Shahzad R. Comparison of choroidal thickness measurements between spectral-domain OCT and swept-source OCT in normal and diseased eyes. Clin Ophthalmol. 2016;10:2271-2276. https://doi.org/10.2147/OPTH.S117022
  24. Anegondi N, Kshirsagar A, Mochi TB, et al. Quantitative Comparison of Retinal Vascular Features in Optical Coherence Tomography Angiography Images From Three Different Devices. Ophthalmic Surg Lasers Imaging Retina. 2018;49(7):488-496. https://doi.org/10.3928/23258160-20180628-04
  25. Copete S, Flores-Moreno I, Montero JA, et al. Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol. 2014;98(3):334-338. https://doi.org/10.1136/bjophthalmol-2013-303904
  26. Zhang Q, Chen CL, Chu Z, et al. Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms. Invest Ophthalmol Vis Sci. 2017;58(3):1506-1513. https://doi.org/10.1167/iovs.16-20977
  27. Su GL, Baughman DM, Zhang Q, et al. Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography. Clin Ophthalmol. 2017;11:889-895. https://doi.org/10.2147/OPTH.S135479
  28. Lee WJ, Oh S, Kim YK, et al. Comparison of glaucoma-diagnostic ability between wide-field swept-source OCT retinal nerve fiber layer maps and spectral-domain OCT. Eye (Lond). 2018;32(9):1483-1492. https://doi.org/10.1038/s41433-018-0104-5

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.