The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kurysheva N.I.

Oftal'mologicheskij tsentr Federal'nogo mediko-biologicheskogo agentstva, ul. Gamalei, 15, Moskva, Rossijskaja Federatsija, 123098

Maslova E.V.

Institute of Professional Development, Federal Medical-Biological Agency, 15 Gamalei St., Moscow, Russian Federation, 123098

Trubilina A.V.

Consultative and Diagnostic Department of the Ophthalmology Center of the Federal Medical and Biological Agency of Russia, A.I. Burnazyan Federal Medical Biophysical Center of FMBA, Institute of Improvement of Professional Skill of the FMBA of Russia, 15 Gamalei St., Moscow, Russian Federation, 123098

Ardzhevnishvili T.D.

Consultative and Diagnostic Department of the Ophthalmology Center of the Federal Medical and Biological Agency of Russia, A.I. Burnazyan Federal Medical Biophysical Center of FMBA, Institute of Improvement of Professional Skill of the FMBA of Russia, 15 Gamalei St., Moscow, Russian Federation, 123098

Fomin A.V.

Research Institute of Eye Diseases

Macular blood flow in glaucoma

Authors:

Kurysheva N.I., Maslova E.V., Trubilina A.V., Ardzhevnishvili T.D., Fomin A.V.

More about the authors

Journal: Russian Annals of Ophthalmology. 2017;133(2): 29‑38

Read: 1664 times


To cite this article:

Kurysheva NI, Maslova EV, Trubilina AV, Ardzhevnishvili TD, Fomin AV. Macular blood flow in glaucoma. Russian Annals of Ophthalmology. 2017;133(2):29‑38. (In Russ.)
https://doi.org/10.17116/oftalma2017133229-37

Recommended articles:
Neuroprotective therapy of glaucoma. Russian Annals of Ophthalmology. 2025;(1):83-90

References:

  1. Curcio CA, Allen K.A. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5-25. doi:10.1002/cne.903000103
  2. Gabriele ML, Wollstein G, Ishikawa H, Xu J, Kim J, Kagemann L, Folio LS, Schuman JS. Three dimensional optical coherence tomography imaging:advantages and advances. Prog Retin Eye Res. 2010;29:556-579. doi:10.1016/j.preteyeres.2010.05.005
  3. Hood DC, Raza AS, de Moraes CG. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1-21. doi:10.1016/j.preteyeres.2012.08.003
  4. Stamper RL. The effect of glaucoma on central visual function. Trans Am Ophthalmol Soc. 1984;82:792-826.
  5. Araie M. Pattern of visual field defects in normal-tension and high-tension glaucoma. Curr Opin Ophthalmol. 1995;6:36-45. doi:10.1097/00055735-199504000-00007
  6. Anctil J-L, Anderson DR. Early foveal involvement and generalized depression of the visual field inglaucoma. Arch Ophthalmol. 1984;102:363-370. doi:10.1001/archopht.1984.01040030281019
  7. Aulhorn E, Harms M. Early visual field defects in glaucoma. In: Leydhecker W, ed. Glaucoma, Tutzing Symposium. Karger: Basel; 1967:151-186. doi:10.1159/000389404
  8. Drance S. The early field defects in glaucoma. Invest Ophthalmol. 1969;8:84-91.
  9. Heijl A, Lundqvist L. The frequency distribution of earliest glaucomatous visual field defects documented by automated perimetry. Acta Ophthalmol. 1984;62:657-664.
  10. Spaide R, Klancic J, Cooney M. Retinal vascular layers imaged by fluorescein angiography and optical coherent tomography angiography. JAMA Ophthalmol. 2015;133:45-50. doi:10.1001/jamaophthalmol. 2014.3616
  11. Liu L, Jia Y, Takusagawa H, Morrison J, Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol. 2015;133(9):1045-1052. doi:10.1001/jamaophthalmol.2015.2225
  12. Wang Y, Fawzi AA, Varma R, et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci. 2015;52:840-845. doi:10.1167/iovs.10-5985
  13. Snodderly D, Weinhaus R, Choi J. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci. 1992;12:1169-1193.
  14. Savastano M, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;35(11):2196-2203. doi:10.1097/iae.0000000000000635
  15. Siah W, Loughman J, O’Brien C. Lower macular pigment optical dencity in foveal-involved glaucoma. Ophthalmology. 2015;122(10):2029-2037. doi:10.1016/j.ophtha.2015.06.028
  16. Kanis M, Lemij H, Berendschort T, et al. Foveal come photoreceptor involvement in primary open angle glaucoma. Graefs Arch Clin Exp Ophthalmol. 2010;248:999-1006. doi:10.1007/s00417-010-1331-z
  17. Nork T, VerHoeve J, Poulsen G, et al. Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol. 2000;118:233-245.
  18. Choi SS, Zawadzki RJ, Lim MC, et al. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging. Br J Ophthalmol. 2011;95:131-141. doi:10.1136/bjo.2010.183756
  19. Kurysheva NI, Ardzhevnishvili TD, Kiseleva TN, Fomin AV. The choroid in glaucoma: the results of a study by optical coherence tomography. Natsional'nyi zhurnal glaukoma. 2013;4:73-83. (In Russ.)
  20. Kurysheva NI, Parshunina OA, Maslova EV, Kiseleva TN, Lagutin MB. Diagnostic significance of the research of ocular blood flow in early detection of primary open-angle glaucoma. Natsional'nyi zhurnal glaukoma. 2015;3(14):19-28. (In Russ.)

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.