Большунов А.В.

Учреждение Российской академии медицинских наук "НИИ глазных болезней" РАМН, Москва

Соболь Э.Н.

ФГБУН "Институт проблем лазерных и информационных технологий" РАН, Троицк

Федоров А.А.

Московский областной НИИ акушерства и гинекологии

Баум О.И.

ФГБУН "Институт проблем лазерных и информационных технологий" РАН, Троицк

Омельченко А.И.

ФГБУН "Институт проблем лазерных и информационных технологий" РАН, Троицк

Хомчик О.В.

ФГБУ "НИИ глазных болезней" РАМН, Москва

Щербаков Е.М.

ФГАОУ ВПО "Национальный исследовательский ядерный университет", Москва

Изучение возможности усиления фильтрации внутриглазной жидкости при неразрушающем лазерном воздействии на склеру в проекции плоской части цилиарного тела (экспериментальное исследование)

Журнал: Вестник офтальмологии. 2013;129(1): 22-26

Просмотров : 48

Загрузок : 2

Как цитировать

Большунов А. В., Соболь Э. Н., Федоров А. А., Баум О. И., Омельченко А. И., Хомчик О. В., Щербаков Е. М. Изучение возможности усиления фильтрации внутриглазной жидкости при неразрушающем лазерном воздействии на склеру в проекции плоской части цилиарного тела (экспериментальное исследование). Вестник офтальмологии. 2013;129(1):22-26.

Авторы:

Большунов А.В.

Учреждение Российской академии медицинских наук "НИИ глазных болезней" РАМН, Москва

Все авторы (7)

Наличие оттока внутриглазной жидкости (ВГЖ) у человека через передний отдел сосудистого тракта наряду с транстрабекулярным дренированием впервые было установлено A. Bill и соавт. [6-8] в 1965 г. Этот путь впоследствии был назван увеальным [7] и долгое время позиционировался как pressure independent outflow, т.е. независимый от значений внутриглазного давления (ВГД) [4].

В дальнейшем установили [10], что жидкость из перихориоидального пространства не только оттекает в сосудистое русло склеры и увеального тракта, но может также диффундировать непосредственно через толщу склеры [9, 11, 12]. О динамических свойствах транссклеральной фильтрации ВГЖ свидетельствуют данные ряда авторов о достоверном снижении ВГД после воздействия на склеру лазерным излучением в проекции pars plana [5, 13, 14]. Кроме того, в экспериментах in vivo на глазах кроликов и in vitro на аутопсийных человеческих глазах группой отечественных исследователей [2] была продемонстрирована возможность увеличения гидропроницаемости склеры в результате ее неоднородного нагрева ипульсно-периодическим излучением волоконного лазера на длине волны 1,56 мкм. Авторы высказали предположение, что возникающие при этом неравномерные термомеханические напряжения коллагеновых волокон, вероятно, могут вызывать локальные микродефекты с образованием микропор, увеличенных межволоконных пространств, повышающих порозность склеры и ее гидропроницаемость (имеется положительное решение на выдачу патента РФ от 20 июня 2012 г. №2011122409).

Термомеханическое действие лазерного излучения на биологические ткани-мишени используется в клинике для коррекции формы перегородки носа [1, 3] и активации регенераторных процессов в хрящевых тканях суставов и межпозвонковых дисков [1, 17]. При этом одним из механизмов лечебного воздействия является образование микропористой структуры хрящевого матрикса, что способствует увеличению гидропроницаемости ткани [2, 17]. При воздействии неоднородного по интенсивности лазерного излучения на биологические ткани происходит их локальный нагрев и тепловое расширение, которому препятствуют менее нагретые соседние области. В результате взаимодействия сжатых и растянутых областей возникают механические напряжения и структурные изменения, ведущие к повышению порозности ткани, в том числе за счет процессов вапоризации. В частности, с образованием микропор связан один из механизмов релаксации напряжений в твердых телах, приводящих к управляемому изменению формы хрящей при неразрушающем воздействии лазерного излучения [15, 16].

Таким образом, можно ожидать, что образование пор и прерывности коллагенового матрикса склеры в результате термомеханического действия лазерного излучения будет способствовать увеличению ее локальной гидропроницаемости и соответственно снижению ВГД.

Цель исследования - морфофункциональное изучение состояния транссклеральной фильтрации ВГЖ после неразрушающего воздействия импульсно-периодическим лазерным излучением на длине волны 1,56 мкм в проекции плоской части цилиарного тела.

Материал и методы

Эксперименты проводили in vitro на четырех аутопсийных человеческих глазах и in vivo на восьми глазах четырех кроликов породы шиншилла массой 2-2,5 кг.

В работе использовали Er-glass волоконный лазер, генерирующий излучение на длине волны 1,56 мкм, которое поглощается в слое 0,7 мм, не повреждая при этом более глубокие ткани глаза. Доставку лазерного излучения осуществляли с помощью оптоволокна с внешним диаметром 600 мкм. Облучение проводили как в непрерывном, так и в импульсно-периодическом режимах. Мощность излучения на конце оптоволокна (W) варьировала в диапазоне 0,4-2,4 Вт, длительность лазерных импульсов (Т) составляла 200-500 мс, частота следования импульсов f=1,4-2,5 Гц, длительность воздействия 1-4 с. Для измерения мощности использовали измеритель мощности Fieldmaster («Coherent», США).

Для выбора оптимального режима облучения, позволяющего при воздействии на склеру глаза увеличить ее гидропроницаемость, была построена теоретическая модель, с помощью которой удалось получить распределение температурного поля внутри биологической ткани под действием лазерного излучения. На основе этой модели была произведена вариация основных параметров, влияющих на перераспределение температурного поля (мощности лазерного излучения, длительности и частоты следования импульсов, а также эффективного радиуса распределения лазерного пятна).

В качестве оптимальных принимались такие диапазоны изменения параметров, в которых не происходит денатурации ткани, а градиенты температур соответствуют термическим напряжениям, достаточным для образования пор в биополимерах.

Гидропроницаемость измеряли на специально созданной установке (рис. 1),

Рисунок 1. Установка для измерения гидропроницаемости образца. 1 - кювета; 2 - капилляр; 3 - шприц; 4 - манометр.
позволяющей по объему жидкости, прошедшей сквозь склеру из-за разности давления под ее поверхностью и над ней, измерять гидропроницаемость в проекции плоской части цилиарного тела. Динамику прокачивания жидкости через облученную область регистрировали с помощью фотоаппарата Canon PC 1192 (Япония).

Аутопсийные глаза перед проведением эксперимента подсушивали, для чего c поверхности удаляли избыточную воду гигроскопичной тканью во избежание погрешностей, связанных с поглощением избыточной водой на поверхности, но при этом не допускали пересыхания.

Облучение производили контактно, коагуляты наносили на склеру в проекции pars plana.

Методика экспериментов in vivo на глазах кроликов. После предварительной местной инстилляционной анестезии 0,5% Sol. Alkaini и парабульбарной анестезии (общей) торец оптоволокна помещали на склеру в проекции pars plana. Всего на склеру наносили до 40 коагулятов. Измерение гидропроницаемости склеры проводили до и после лазерного воздействия в течение 15 мин (рис. 2)

Рисунок 2. Изменение высоты столбика жидкости (указано стрелкой) до (а) лазерного воздействия.
Рисунок 2. Изменение высоты столбика жидкости (указано стрелкой) через 15 мин после (б) лазерного воздействия.
по методике, описанной в работе [2].

Животных выводили из эксперимента как непосредственно после лазерного воздействия, так и через 45 сут. Выделенные глаза исследовали гистологически методом полутонких срезов.

Методика гистологического исследования. Энуклеированные глаза фиксировали в холодном 2,5% растворе глутаральдегида в течение 2-8 ч. Затем глаза рассекали вдоль экватора, под стереомикроскопом находили и вырезали фрагменты стенки глазного яблока размером 2×2 мм в месте нанесения коагулятов. Полученные образцы дофиксировали в 1% растворе осмиевой кислоты (1 ч), обезвоживали в спиртах возрастающей концентрации и заливали в смесь эпоксидных смол эпон-аралдит. Для изготовления полутонких срезов толщиной 0,5-1,5 мкм использовали Ультратом-IV («LKB», Швеция), срезы окрашивали метиленовым синим и фуксином (полихромное окрашивание), а для исследования полученных гистологических препаратов использовали Фотомикроскоп-III («Opton», Германия). Изображения со светового микроскопа регистрировали на цифровую фотовидеокамеру в составе аппаратно-программного комплекса автоматической морфоденситометрии ДиаМорф.

Результаты и обсуждение

В выбранных диапазонах варьирования параметров лазерного воздействия максимальное увеличение гидропроницаемости склеры аутопсийных глаз и глаз экспериментальных животных было достигнуто при следующих параметрах: W=0,9 Вт, длительность импульса Т=200 мс, частота следования импульсов f=2,5 Гц, время облучения 4 с.

Соответствующее увеличение высоты столбика жидкости, протекшей через склеру, показано на рис. 3.

Рисунок 3. График изменения гидропроницаемости склеры глаза кролика до (1) и после (2) лазерного воздействия.

На гистологических препаратах аутопсийных глаз с оптимальными показателями гидропроницаемости склеры непосредственно после облучения определялась уплотненная зона склеры в эпицентре воздействия лазерным излучением и более разреженная зона по периферии очага. Более плотная зона склеры была обусловлена тепловой денатурацией, контракцией и компактизацией коллагеновых волокон. Периферические отделы разрежены в результате их натяжения, микроразрывов и расширения межволоконных пространств (рис. 4).

Рисунок 4. Патоморфологическая картина аутопсийной склеры в зоне лазерного воздействия в оптимальном режиме: наблюдаются максимальное увеличение гидропроницаемости и разреженность склеральной ткани вокруг зоны уплотнения (показаны черными стрелками), функционирующие эписклеральные сосуды (показаны белой стрелкой). Здесь и на рис. 5, 6, 10 - полутонкий срез. Полихромное окрашивание. Ув. 125.
При этом оставались проходимыми как интра-, так и эписклеральные сосуды этой зоны.

Для того чтобы определить продолжительность и обратимость постлазерных изменений в склере, обусловливающих ее повышенную гидропроницаемость, важно было получить отдаленные результаты патогистологического исследования. В связи с этим в экспериментах на кроликах помимо склеры изучали состояние других структур глаза, в той или иной степени ответственных за гидродинамику, в частности цилиарное тело: его отростчатую и плоскую части. Лазерное облучение соответствующих отделов глаза кролика проводили с параметрами, аналогичными таковым в анатомическом эксперименте. Сравнивали результаты гистологического исследования острого (через 1 сут) и хронического (через 45 сут) опытов.

Гистологическая картина острого периода постлазерного воздействия на склеру кролика во многом схожа с картиной в анатомическом эксперименте на человеческом аутопсийном глазу (рис. 5).

Рисунок 5. Патоморфологическая картина склеры глаза кролика через 1 сут после лазерного воздействия: выраженный отек хориоидеи, расширение супрахориоидального пространства в проекции порозной склеры по периферии очага (показаны стрелками).
Отличительной особенностью реакции живой ткани явилась более выраженная экссудативная реакция (особенно в подлежащей сосудистой оболочке), локальная отслойка сетчатки в проекции очага. Обилие параллельных щелевидных пространств в склере, а главное некоторое расширение супрахориоидального пространства в их проекции, позволило сделать предположение об усиленной транссклеральной фильтрации по периферии очага воздействия лазерного излучения.

К концу эксперимента (45-е сутки) очаг воздействия в области склеры представлял собой утолщенный участок рыхлой, отечной, гипоцеллюлярной ткани, выстоящей в сторону хориоидеи (рис. 6).

Рисунок 6. Патоморфологическая картина склеры глаза кролика на 45-е сутки после лазерного воздействия: утолщенная и гомогенная часть эпицентра воздействия на склеру, расширение супрахориоидального пространства, истончение и атрофия подлежащих участков средней и внутренней оболочек глаза.
Прилегающий участок сосудистой оболочки истончен, частично замещен пигментированной рубцовой тканью с облитерированными сосудами. Подлежащая часть сетчатой оболочки атрофирована, замещена глиальной тканью на гиперпигментированном слое пигментного эпителия. Главной особенностью, отличающей очаг воздействия к этому сроку, следует считать значительное расширение супрахориоидального пространства, что предполагает некоторое увеличение увеального оттока ВГЖ в области лазерного воздействия, а также локального транссклерального пассажа, о чем свидетельствует состояние склеральной ткани в области очага: рыхлая гипергидратированная, бесклеточная.

Следующим объектом морфологического исследования была область плоской части цилиарного тела - наиболее тонкая часть хориоретинальной выстилки склеры, место, наиболее часто используемое для лазерных или иных воздействий при глаукоме.

Сразу после воздействия лазерным излучением двухслойная «слепая» часть сетчатки в области плоской части цилиарного тела выглядела отечной, вакуолизированной в беспигментном своем слое, с истонченной, местами порозной внутренней пограничной мембраной (рис. 7).

Рисунок 7. Патоморфологическая картина плоской части цилиарного тела глаза кролика через 1 сут после лазерного воздействия: наблюдаются рыхлая порозная внутренняя пограничная мембрана (ВПМ), вакуолизация клеток (показана звездочками), дефекты в пигментном листке (показаны стрелками), отечная рыхлая подлежащая сосудистая оболочка. Здесь и на рис. 8, 9 - полутонкий срез. Полихромное окрашивание. Ув. 400.
Наружный пигментный листок изменен в большей степени: диссоциация клеток, перераспределение гранул меланина в клетках, вакуолизация цитоплазмы. Все эти изменения свидетельствовали о местном нарушении барьерных свойств эпителия, увеличении его проницаемости по отношению к ВГЖ. В подлежащей ткани постлазерные изменения заключались в увеличении межклеточных и межволоконных пространств, заполняемых тканевой жидкостью. Таким образом, в остром периоде ВГЖ в месте воздействия фактически непосредственно контактировала с сосудистой оболочкой и свободно дренировалась в супрахориоидальное пространство.

Через 45 сут происходило неполное восстановление эпителиоподобной выстилки. Беспигментные клетки эпителия сохраняли отечность цитоплазмы, истонченную ВПГ. В пигментном листке отмечали клеточный полиморфизм, гипопигментацию, вакуолизацию цитоплазмы. Мембрана Бруха оставалась прерывистой (рис. 8).

Рисунок 8. Патоморфологическая картина плоской части цилиарного тела глаза кролика через 45 сут после лазерного воздействия: отмечаются неполное восстановление эпителиальной выстелки, прерывистость мембраны Бруха (показаны стрелками), расширенные межволоконные пространства (показаны звездочками) в подлежащей сосудистой оболочке.
Подлежащая сосудистая оболочка оставалась рыхлой, содержащей множество последовательно расположенных межволоконных расширений по периферии эпицентра очага, достигающих щелевидного супрахориоидального пространства. Таким образом, через 45 сут после лазерного воздействия в области плоской части цилиарного тела сохранялись морфологические изменения в виде незавершенной регенерации барьерных структур, очаговой отечности и порозности подлежащей сосудистой оболочки и расширенного супрахориоидального пространства. В совокупности эти морфологические особенности могут способствовать местной активации увеосклерального оттока ВГЖ.

Следующей важной точкой приложения антиглаукомного воздействия лазерного излучения является отростчатая часть цилиарного тела. В 1-е сутки после воздействия лазерным излучением в проекции цилиарных отростков глаза кролика основные морфологические изменения отмечали на уровне его эпителия. В самом цилиарном теле (в мышечной и сосудистой его частях) видимых изменений не обнаруживали. Изменения на уровне эпителия носили очаговый характер и соответствовали местам лазерных аппликаций. Они заключались в частичной или полной отслойке эпителия, дисперсии гранул пигмента, деструкции клеток слоя беспигментного эпителия, отслоении с микроразрывами внутренней пограничной мембраны, частичном выходе клеточного детрита в заднюю камеру глаза (рис. 9).

Рисунок 9. Патоморфологическая картина цилиарных отростков глаза кролика через 1 сут после лазерного воздействия: наблюдаются отслойка и деструкция цилиарного эпителия, отслойка внутренней пограничной мембраны (показаны стрелками), запустевание сосудов (показано звездочками).
Мембрана Бруха сохраняла свою целостность. Сосуды в строме отростков были дилатированы и лишены форменных элементов крови, вероятно, в результате нарушения проходимости приносящих сосудов. Таким образом, ишемия цилиарных отростков даже в условиях нарушенного крове-жидкостного барьера могла привести к уменьшению фильтрации ВГЖ уже в первые часы после лазерного воздействия.

Через 45 дней отмечали восстановление целостности цилиарного эпителия, хотя полной дифференцировки его слоев к этому времени не происходило (рис. 10).

Рисунок 10. Патоморфологическая картина цилиарных отростков глаза кролика через 45 дней после лазерного воздействия: отмечается восстановление целостности цилиарного эпителия, большая часть капилляров находится в спавшемся состоянии (показано стрелками), в магистральных сосудах - формирование пристеночного тромба (показано звездочкой).
В слое беспигментного эпителия цитоплазма клеток была микровакуолизирована. В пигментном листке клетки содержали более крупные (сливные), но малочисленные вакуоли. Обращало на себя внимание практически полное отсутствие функционирующих капилляров в цилиарных отростках. Гемодинамика сохранялась лишь в магистральных сосудах. В части из них можно было видеть формирование пристеночных тромбов. Таким образом, нарушение микроциркуляции в цилиарных отростках в отдаленном периоде после лазерного воздействия может замедлить фильтрацию ВГЖ и способствовать дозированному и прогнозируемому снижению ВГД.

Заключение

Таким образом, на основании полученных результатов экспериментального исследования удалось выработать оптимальный режим для создания максимально проницаемого участка склеры. При этом грубых повреждений тканей глаза не происходит, а область лазерного воздействия приобретает повышенную гидропроницаемость. Комплексное воздействие лазерного излучения на склеру, плоскую часть цилиарного тела и его отростки способно привести к суммации патогистологических изменений, обусловливающих снижение секреции ВГЖ в результате редукции капилляров цилиарных отростков, активации ее увеального пути оттока через истонченные хориоретинальные слои в очаге воздействия, последующего расширения супрахориоидального пространства и, наконец, усиления транссклеральной фильтрации жидкости за счет появления в склере пористых структур. Подобное комплексное воздействие лазерного излучения способно дать максимально выраженный и продолжительный гипотензивный эффект. Полученные данные могут стать основой для создания новой неинвазивной технологии неразрушающего лазерного воздействия в лечении глаукомы.

Подтверждение e-mail

На test@yandex.ru отправлено письмо с ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail