The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Galchenko A.V.

Federal State Budgetary Institution of Science Federal Research Center for Nutrition, Biotechnology and Food Safety of the Ministry of Education and Science of Russia

Influence of lifestyle factors on bone metabolism and the risk of osteoporosis

Authors:

Galchenko A.V.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2022;25(6): 96‑107

Read: 7895 times


To cite this article:

Galchenko AV. Influence of lifestyle factors on bone metabolism and the risk of osteoporosis. Russian Journal of Preventive Medicine. 2022;25(6):96‑107. (In Russ.)
https://doi.org/10.17116/profmed20222506196

Recommended articles:
Features of como­rbidity pathology in young people. Russian Journal of Preventive Medi­cine. 2024;(11):63-69
Nutrition, inte­stinal microbiota, and thyroid autoimmune pathology. Russian Journal of Preventive Medi­cine. 2025;(1):102-108
Lung tube­rculosis and mali­gnant neoplasms: the current state of the problem. Russian Journal of Preventive Medi­cine. 2025;(3):122-127
Biochemical features of migraine pathogenesis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4):21-26

References:

  1. Lane JM, Russell L, Khan SN. Osteoporosis. Clinical Orthopaedics and Related Research. 2000;(372):139-150.  https://doi.org/10.1097/00003086-200003000-00016
  2. Karaguzel G, Holick MF. Diagnosis and treatment of osteopenia. Reviews in Endocrine and Metabolic Disorders. 2010;11(4):237-251.  https://doi.org/10.1007/s11154-010-9154-0
  3. Melnichenko GA, Belaya ZhE, Rozhinskaya LIa, Toroptsova NV, Alekseeva LI, Biryukova EV, Grebennikova TA, Dzeranova LK, Dreval AV, Zagorodniy NV, Il’yin AV, Kriukova IV, Lesnyak OM, Mamedova EO, Nikitinskaya OA, Pigarova EA, Rodionova SS, Skripnikova IA, Tarbaeva NV, Farba LYa, Tsoriev TT, Chernova TO, Yureneva SV, Yakushevskaya OV, Dedov II. Russian federal clinical guidelines on the diagnostics, treatment, and prevention of osteoporosis. Problemy endokrinologii. 2017;63(6):392-426. (In Russ.). https://doi.org/10.14341/probl2017636392-426
  4. Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M. Noninvasive assessment of bone mineral and structure: state of the art. Journal of Bone and Mineral Research. 1996;11(6):707-730.  https://doi.org/10.1002/jbmr.5650110602
  5. Leder BZ. Parathyroid Hormone and Parathyroid Hormone-Related Protein Analogs in Osteoporosis Therapy. Current Osteoporosis Reports. 2017; 15(2):110-119.  https://doi.org/10.1007/s11914-017-0353-4
  6. Naot D, Musson DS, Cornish J. The Activity of Peptides of the Calcitonin Family in Bone. Physiological Reviews. 2019;99(1):781-805.  https://doi.org/10.1152/physrev.00066.2017
  7. Wang C-W, McCauley LK. Osteoporosis and Periodontitis. Current Osteoporosis Reports. 2016;14(6):284-291.  https://doi.org/10.1007/s11914-016-0330-3
  8. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. The Journal of Clinical Investigation. 1998;102(2):274-282.  https://doi.org/10.1172/JCI2799
  9. Lloyd SA, Lang CH, Zhang Y, Paul EM, Laufenberg LJ, Lewis GS, Donahue HJ. Interdependence of Muscle Atrophy and Bone Loss Induced by Mechanical Unloading: MUSCLE ATROPHY AND BONE LOSS DURING UNLOADING. Journal of Bone and Mineral Research. 2014;29(5):1118-1130. https://doi.org/10.1002/jbmr.2113
  10. Bentz AT, Schneider CM, Westerlind KC. The relationship between physical activity and 2-hydroxyestrone, 16α-hydroxyestrone, and the 2/16 ratio in premenopausal women (United States). Cancer Causes Control. 2005; 16(4):455-461.  https://doi.org/10.1007/s10552-004-6256-6
  11. Sato K, Iemitsu M, Matsutani K, Kurihara T, Hamaoka T, Fujita S. Resistance training restores muscle sex steroid hormone steroidogenesis in older men. FASEB Journal. 2014;28(4):1891-1897. https://doi.org/10.1096/fj.13-245480
  12. Shalina MA, Yarmolinskaya MI, Abashova EI. The effect of hormone therapy on bone tissue: myths and reality. Zhurnal akusherstva i zhenskikh boleznej. 2018;67(3):83-94. (In Russ.). https://doi.org/10.17816/JOWD67383-94
  13. Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R. Estrogen Decreases Osteoclast Formation by Down-regulating Receptor Activator of NF-κB Ligand (RANKL)-induced JNK Activation. Journal of Biological Chemistry. 2001;276(12):8836-8840. https://doi.org/10.1074/jbc.M010764200
  14. Karateev DE, Luchikhina EL. Glucocorticosteroid osteoporosis: modern approaches to therapy. Effektivnaya farmakoterapiya. Revmatologiya. Travmatologiya. Ortopediya. 2018;33(3-4):16-25. (In Russ.).
  15. McIlwain HH. Glucocorticoid-induced osteoporosis: pathogenesis, diagnosis, and management. Preventive Medicine. 2003;36(2):243-249.  https://doi.org/10.1016/s0091-7435(02)00019-1
  16. Aguado E, Pascaretti-Grizon F, Goyenvalle E, Audran M, Chappard D. Bone Mass and Bone Quality Are Altered by Hypoactivity in the Chicken. PLoS ONE. 2015;10(1):e0116763. https://doi.org/10.1371/journal.pone.0116763
  17. Aguado E, Mabilleau G, Goyenvalle E, Chappard D. Hypodynamia Alters Bone Quality and Trabecular Microarchitecture. Calcified Tissue International. 2017;100(4):332-340.  https://doi.org/10.1007/s00223-017-0235-x
  18. Sinaki M, Pfeifer M, Preisinger E, Itoi E, Rizzoli R, Boonen S, Geusens P, Minne HW. The role of exercise in the treatment of osteoporosis. Current Osteoporosis Reports. 2010;8(3):138-144.  https://doi.org/10.1007/s11914-010-0019-y
  19. Scofield KL, Hecht S. Bone Health in Endurance Athletes: Runners, Cyclists, and Swimmers. Current Sports Medicine Reports. 2012;11(6):328-334.  https://doi.org/10.1249/JSR.0b013e3182779193
  20. Gómez-Cabello A, Ara I, González-Agüero A, Casajús JA, Vicente-Rodríguez G. Effects of training on bone mass in older adults: a systematic review. Sports Medicine. 2012;42(4):301-325.  https://doi.org/10.2165/11597670-000000000-00000
  21. Segev D, Hellerstein D, Dunsky A. Physical Activity-does it Really Increase Bone Density in Postmenopausal Women? A Review of Articles Published Between 2001—2016. Current Aging Science. 2018;11(1):4-9.  https://doi.org/10.2174/1874609810666170918170744
  22. Aboarrage Junior AM, Teixeira CVS, Dos Santos RN, Machado AF, Evangelista AL, Rica RL, Alonso AC, Barroso JA, Serra AJ, Baker JS, Bocalini DS. A High-Intensity Jump-Based Aquatic Exercise Program Improves Bone Mineral Density and Functional Fitness in Postmenopausal Women. Rejuvenation Research. 2018;21(6):535-540.  https://doi.org/10.1089/rej.2018.2069
  23. Wu HY, Wang YR, Wen GW, Tang ZY, Yu YQ, Zhang JR, Liu P, Wu JH. Tai Chi on bone mineral density of postmenopausal osteoporosis: A protocol for systematic review and meta-analysis. Medicine. 2020;99(36):e21928. https://doi.org/10.1097/MD.0000000000021928
  24. Ferrara PE, Salini S, Maggi L, Foti C, Maccauro G, Ronconi G. Evaluation of quality of life and static balance in postmenopausal osteoporosis women after Tai Chi Chuan practice: an observational randomized case control study. XIX Congresso Nazionale S.I.C.O.O.P. Societa’ Italiana Chirurghi Ortopedici Dell’ospedalita’ Privata Accreditata. Journal of Biological Regulators and Homeostatic Agents. 2019;33(2 suppl 1):163-169. 
  25. Angın E, Erden Z, Can F. The effects of clinical pilates exercises on bone mineral density, physical performance and quality of life of women with postmenopausal osteoporosis. Journal of Back and Musculoskeletal Rehabilitation. 2015;28(4):849-858.  https://doi.org/10.3233/BMR-150604
  26. Su Y, Chen Z, Xie W. Swimming as Treatment for Osteoporosis: A Systematic Review and Meta-analysis. BioMed Research International. 2020;2020: 6210201. https://doi.org/10.1155/2020/6210201
  27. Marin-Puyalto J, Gomez-Cabello A, Gonzalez-Agüero A, Gomez-Bruton A, Matute-Llorente A, Casajús JA, Vicente-Rodríguez G. Is Vibration Training Good for Your Bones? An Overview of Systematic Reviews. BioMed Research International. 2018;2018:5178284. https://doi.org/10.1155/2018/5178284
  28. Marín-Cascales E, Alcaraz PE, Ramos-Campo DJ, Martinez-Rodriguez A, Chung LH, Rubio-Arias JÁ. Whole-body vibration training and bone health in postmenopausal women: A systematic review and meta-analysis. Medicine. 2018;97(34):e11918. https://doi.org/10.1097/MD.0000000000011918
  29. Kazakia GJ, Tjong W, Nirody JA, Burghardt AJ, Carballido-Gamio J, Patsch JM, Link T, Feeley BT, Ma CB. The influence of disuse on bone microstructure and mechanics assessed by HR-pQCT. Bone. 2014;63:132-140.  https://doi.org/10.1016/j.bone.2014.02.014
  30. Aparisi Gómez MP, Weidekamm C, Aparisi F, Bazzocchi A. Sports and Metabolic Bone Disease. Seminars in Musculoskeletal Radiology. 2020;24(3): 277-289.  https://doi.org/10.1055/s-0040-1709483
  31. Herrmann D, Buck C, Sioen I, Kouride Y, Marild S, Molnár D, Mouratidou T, Pitsiladis Y, Russo P, Veidebaum T, Ahrens W; IDEFICS consortium. Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2-10-year-old children-cross-sectional results from the IDEFICS study. The International Journal of Behavioral Nutrition and Physical Activity. 2015;12:112.  https://doi.org/10.1186/s12966-015-0273-6
  32. Nilsson M, Ohlsson C, Mellström D, Lorentzon M. Sport-specific association between exercise loading and the density, geometry, and microstructure of weight-bearing bone in young adult men. Osteoporosis International. 2013;24(5):1613-1622. https://doi.org/10.1007/s00198-012-2142-3
  33. Tong X, Chen X, Zhang S, Huang M, Shen X, Xu J, Zou J. The Effect of Exercise on the Prevention of Osteoporosis and Bone Angiogenesis. BioMed Research International. 2019;2019:8171897. https://doi.org/10.1155/2019/8171897
  34. Klein-Nulend J, Bacabac R, Bakker A. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. European Cells and Materials. 2012;24:278-291.  https://doi.org/10.22203/ecm.v024a20
  35. Santos A, Bakker AD, Zandieh-Doulabi B, Semeins CM, Klein-Nulend J. Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. Journal of Orthopaedic Research. 2009; 27(10):1280-1287. https://doi.org/10.1002/jor.20888
  36. Yuan Y, Chen X, Zhang L, Wu J, Guo J, Zou D, Chen B, Sun Z, Shen C, Zou J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Progress in Biophysics and Molecular Biology. 2016; 122(2):122-130.  https://doi.org/10.1016/j.pbiomolbio.2015.11.005
  37. Guo Y, Wang Y, Liu Y, Liu Y, Zeng Q, Zhao Y, Zhang X, Zhang X. MicroRNA-218, microRNA-191*, microRNA-3070a and microRNA-33 are responsive to mechanical strain exerted on osteoblastic cells. Molecular Medicine Reports. 2015;12(2):3033-3038. https://doi.org/10.3892/mmr.2015.3705
  38. Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, Li Z, Peng J, Wang P, Shen C, Huang Y, Xu J, Zhang X, Chen X. microRNA-103a Functions as a Mechanosensitive microRNA to Inhibit Bone Formation Through Targeting Runx2. Journal of Bone and Mineral Research. 2015;30(2):330-345.  https://doi.org/10.1002/jbmr.2352
  39. Yehya N, Yerrapureddy A, Tobias J, Margulies SS. MicroRNA modulate alveolar epithelial response to cyclic stretch. BMC Genomics. 2012;13:154.  https://doi.org/10.1186/1471-2164-13-154
  40. Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K, Stefanick ML, Barrett-Connor E, Orwoll ES; Osteoporotic Fractures in Men Study Research Group. BMI and fracture risk in older men: The osteoporotic fractures in men study (MrOS). Journal of Bone and Mineral Research. 2011;26(3):496-502.  https://doi.org/10.1002/jbmr.235
  41. Głogowska-Szeląg J. Assessment of the relationship between bmd and body mass index bmi in women with postmenopausal osteoporosis. Wiadomosci Lekarskie. 2018;71(9):1714-1718.
  42. Evans AL, Paggiosi MA, Eastell R, Walsh JS. Bone Density, Microstructure and Strength in Obese and Normal Weight Men and Women in Younger and Older Adulthood. Journal of Bone and Mineral Research. 2015;30(5):920-928.  https://doi.org/10.1002/jbmr.2407
  43. De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporosis International. 2005;16(11):1330-1338. https://doi.org/10.1007/s00198-005-1863-y
  44. Lee JH, Kim JH, Hong AR, Kim SW, Shin CS. Optimal body mass index for minimizing the risk for osteoporosis and type 2 diabetes. The Korean Journal of Internal Medicine. 2020;35(6):1432-1442. https://doi.org/10.3904/kjim.2018.223
  45. Johansson H, Kanis JA, Odén A, McCloskey E, Chapurlat RD, Christiansen C, Cummings SR, Diez-Perez A, Eisman JA, Fujiwara S, Glüer CC, Goltzman D, Hans D, Khaw KT, Krieg MA, Kröger H, LaCroix AZ, Lau E, Leslie WD, Mellström D, Melton LJ 3rd, O’Neill TW, Pasco JA, Prior JC, Reid DM, Rivadeneira F, van Staa T, Yoshimura N, Zillikens MC. A Meta-Analysis of the Association of Fracture Risk and Body Mass Index in Women. Journal of Bone and Mineral Research. 2014;29(1):223-233.  https://doi.org/10.1002/jbmr.2017
  46. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R; National Osteoporosis Foundation. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International. 2014;25(10): 2359-2381. https://doi.org/10.1007/s00198-014-2794-2
  47. Lv C, Liu S, Xia J, Xu L, Cheng Y, Li W, Zhang Y, Wang G, Wei W, Shi H, Huang S, Wang N, Hao L. The Mechanism of Dietary Protein Modulation of Bone Metabolism via Alterations in Members of the GH/IGF Axis. Current Protein and Peptide Science. 2019;20(2):115-124.  https://doi.org/10.2174/1389203719666180514143828
  48. Schürch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP. Protein Supplements Increase Serum Insulin-Like Growth Factor-I Levels and Attenuate Proximal Femur Bone Loss in Patients with Recent Hip Fracture: A Randomized, Double-Blind, Placebo-Controlled Trial. Annals of Internal Medicine. 1998;128(10):801-809.  https://doi.org/10.7326/0003-4819-128-10-199805150-00002
  49. Tucker KL. Vegetarian diets and bone status. The American Journal of Clinical Nutrition. 2014;100(suppl 1):329-35.  https://doi.org/10.7326/0003-4819-128-10-199805150-00002
  50. Mehta N, Malootian A, Gilligan J. Calcitonin for Osteoporosis and Bone Pain. Current Pharmaceutical Design. 2003;9(32):2659-2676. https://doi.org/10.2174/1381612033453622
  51. Weaver CM. Potassium and Health. Advances in Nutrition. 2013;4(3):368-77.  https://doi.org/10.3945/an.112.003533
  52. Arazi H, Samadpour M, Eghbali E. The effects of concurrent training (aerobic-resistance) and milk consumption on some markers of bone mineral density in women with osteoporosis. BMC Women’s Health. 2018;18(1):202.  https://doi.org/10.1186/s12905-018-0694-x
  53. Komoroski M, Azad N, Camacho P. Disorders of bone and bone mineral metabolism. Handbook of Clinical Neurology. 2014;120:865-887.  https://doi.org/10.1016/B978-0-7020-4087-0.00058-9
  54. Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiological Reviews. 2018;98(4): 2317-2348. https://doi.org/10.1152/physrev.00022.2017
  55. Frassetto L, Banerjee T, Powe N, Sebastian A. Acid Balance, Dietary Acid Load, and Bone Effects — A Controversial Subject. Nutrients. 2018;10(4):517.  https://doi.org/10.3390/nu10040517
  56. Martin GR, Jain RK. Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Research. 1994;54(21):5670-5674.
  57. Lemann J, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. American Journal of Physiology. Renal Physiology. 2003;285(5): 811-832.  https://doi.org/10.1152/ajprenal.00115.2003
  58. Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ. Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. The Journal of Biological Chemistry. 2005;280(17):17497-17506. https://doi.org/10.1074/jbc.M409332200
  59. Wachman A, Bernstein DanielS. Diet and osteoporosis. The Lancet. 1968; 7549(291):958-959.  https://doi.org/10.1016/S0140-6736(68)90908-2
  60. Barzel US. The skeleton as an ion exchange system: implications for the role of acid-base imbalance in the genesis of osteoporosis. Journal of Bone and Mineral Research. 1995;10(10):1431-1436. https://doi.org/10.1002/jbmr.5650101002
  61. Arnett TR. Acid — base regulation of bone metabolism. International Congress Series. 2007;1297(1):255-267.  https://doi.org/10.1016/j.ics.2006.08.005
  62. Zhu K, Devine A, Prince RL. The effects of high potassium consumption on bone mineral density in a prospective cohort study of elderly postmenopausal women. Osteoporosis International. 2009;20(2):335-340.  https://doi.org/10.1007/s00198-008-0666-3
  63. Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Taha AE, Tiwari R, Yatoo MI, Bhatt P, Khurana SK, Dhama K. Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health. Animals. 2019;9(8):573.  https://doi.org/10.3390/ani9080573
  64. Kajarabille N, Díaz-Castro J, Hijano S, López-Frías M, López-Aliaga I, Ochoa JJ. A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids. The Scientific World Journal. 2013;2013:589641. https://doi.org/10.1155/2013/589641
  65. Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor — to forkhead box O-mediated transcription. The Journal of Biological Chemistry. 2007;282(37):27298-27305. https://doi.org/10.1074/jbc.M702811200
  66. Li M, Hasegawa T, Masuki H, Liu Z, Guo Y, Suzuki R, Yamamoto T, Freitas PHL, Amizuka N. Ultrastructural Assessment of Mineral Crystallization and Collagen Mineralization in Bone. Journal of Oral Biosciences. 2010; 52(2):94-99.  https://doi.org/10.2330/joralbiosci.52.94
  67. Al Alawi AM, Majoni SW, Falhammar H. Magnesium and Human Health: Perspectives and Research Directions. International Journal of Endocrinology. 2018;2018:9041694. https://doi.org/10.1155/2018/9041694
  68. Castiglioni S, Cazzaniga A, Albisetti W, Maier JA. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients. 2013;5(8):3022-3033. https://doi.org/10.3390/nu5083022
  69. Farsinejad-Marj M, Saneei P, Esmaillzadeh A. Dietary magnesium intake, bone mineral density and risk of fracture: A systematic review and meta-analysis. Osteoporosis International. 2016;27(4):1389-1399. https://doi.org/10.1007/s00198-015-3400-y
  70. Lowe NM, Fraser WD, Jackson MJ. Is there a potential therapeutic value of copper and zinc for osteoporosis? The Proceedings of the Nutrition Society. 2002;61(2):181-185.  https://doi.org/10.1079/PNS2002154
  71. Palacios C. The Role of Nutrients in Bone Health, from A to Z. Critical Reviews in Food Science and Nutrition. 2006;46(8):621-628.  https://doi.org/10.1080/10408390500466174
  72. Kim DE, Cho SH, Park HM, Chang YK. Relationship between bone mineral density and dietary intake of β-carotene, vitamin C, zinc and vegetables in postmenopausal Korean women: a cross-sectional study. The Journal of International Medical Research. 2016;44(5):1103-1114. https://doi.org/10.1177/0300060516662402
  73. Zheng J, Mao X, Ling J, He Q, Quan J. Low Serum Levels of Zinc, Copper, and Iron as Risk Factors for Osteoporosis: a Meta-analysis. Biological Trace Element Research. 2014;160(1):15-23.  https://doi.org/10.1007/s12011-014-0031-7
  74. Prentice A. Diet, nutrition and the prevention of osteoporosis. Public Health Nutrition. 2004;7(1A):227-243.  https://doi.org/10.1079/phn2003590
  75. Whitford GM. Intake and metabolism of fluoride. Advances in Dental Research. 1994;8(1):5-14.  https://doi.org/10.1177/08959374940080011001
  76. ten Cate JM. Current concepts on the theories of the mechanism of action of fluoride. Acta Odontologica Scandinavica. 1999;57(6):325-329.  https://doi.org/10.1080/000163599428562
  77. He F, Wu C, Li P, Li N, Zhang D, Zhu Q, Ren W, Peng Y. Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation. BioMed Research International. 2018;2018:9171905. https://doi.org/10.1155/2018/9171905
  78. Mahdavi-Roshan M, Ebrahimi M, Ebrahimi A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clinical Cases in Mineral and Bone Metabolism. 2015;12(1):18-21.  https://doi.org/10.11138/ccmbm/2015.12.1.018
  79. Qu X, He Z, Qiao H, Zhai Z, Mao Z, Yu Z, Dai K. Serum copper levels are associated with bone mineral density and total fracture. Journal of Orthopaedic Translation. 2018;14:34-44.  https://doi.org/10.1016/j.jot.2018.05.001
  80. Rodríguez JP, Ríos S, González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. Journal of Cellular Biochemistry. 2002;85(1):92-100. 
  81. Jugdaohsingh R. Silicon and bone health. The Journal of Nutrition, Health and Aging. 2007;11(2):99-110. 
  82. Mao L, Xia L, Chang J, Liu J, Jiang L, Wu C, Fang B. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomaterialia. 2017; 61:217-232.  https://doi.org/10.1016/j.actbio.2017.08.015
  83. Dong M, Jiao G, Liu H, Wu W, Li S, Wang Q, Xu D, Li X, Liu H, Chen Y. Biological Silicon Stimulates Collagen Type 1 and Osteocalcin Synthesis in Human Osteoblast-Like Cells Through the BMP-2/Smad/RUNX2 Signaling Pathway. Biological Trace Element Research. 2016;173(2):306-315.  https://doi.org/10.1007/s12011-016-0686-3
  84. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiological Reviews. 2016;96(1):365-408.  https://doi.org/10.1152/physrev.00014.2015
  85. Drissi H, Pouliot A, Koolloos C, Stein JL, Lian JB, Stein GS, van Wijnen AJ. 1,25-(OH)2-Vitamin D3 Suppresses the Bone-Related Runx2/Cbfa1 Gene Promoter. Experimental Cell Research. 2002;274(2):323-333.  https://doi.org/10.1006/excr.2002.5474
  86. Nazarenko GI, Kishkun AA. Klinicheskaja otsenka rezul’tatov laboratornykh issledovanij. M.: Meditsina; 2000. (In Russ.).
  87. García-Gomáriz C, Blasco JM, Macián-Romero C, Guillem-Hernández E, Igual-Camacho C. Effect of 2 years of endurance and high-impact training on preventing osteoporosis in postmenopausal women: randomized clinical trial. Menopause. 2018;25(3):301-306.  https://doi.org/10.1097/GME.0000000000001005
  88. Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, Liu S, Looker AC, Wallace TC, Wang DD. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporosis International. 2016; 27(1):367-376.  https://doi.org/10.1007/s00198-015-3386-5
  89. Liu C, Kuang X, Li K, Guo X, Deng Q, Li D. Effects of combined calcium and vitamin D supplementation on osteoporosis in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Food and Function. 2020;11(12):10817-10827. https://doi.org/10.1039/d0fo00787k
  90. Anagnostis P, Bosdou JK, Kenanidis E, Potoupnis M, Tsiridis E, Goulis DG. Vitamin D supplementation and fracture risk: Evidence for a U-shaped effect. Maturitas. 2020;141:63-70.  https://doi.org/10.1016/j.maturitas.2020.06.016
  91. Burt LA, Billington EO, Rose MS, Raymond DA, Hanley DA, Boyd SK. Effect of High-Dose Vitamin D Supplementation on Volumetric Bone Density and Bone Strength: A Randomized Clinical Trial. JAMA. 2019;322(8): 736-745.  https://doi.org/10.1001/jama.2019.11889
  92. Vacek TP, Kalani A, Voor MJ, Tyagi SC, Tyagi N. The role of homocysteine in bone remodeling. Clinical Chemistry and Laboratory Medicine. 2013; 51(3):579-590.  https://doi.org/10.1515/cclm-2012-0605
  93. Yılmaz N, Eren E. Homocysteine oxidative stress and relation to bone mineral density in post-menopausal osteoporosis. Aging Clinical and Experimental Research. 2009;21(4-5):353-357.  https://doi.org/10.1007/BF03324927
  94. Herrmann M, Umanskaya N, Wildemann B, Colaianni G, Widmann T, Zallone A, Herrmann W. Stimulation of osteoblast activity by homocysteine. Journal of Cellular and Molecular Medicine. 2008;12(4):1205-1210. https://doi.org/10.1111/j.1582-4934.2008.00104.x
  95. Herrmann M, Tami A, Wildemann B, Wolny M, Wagner A, Schorr H, Taban-Shomal O, Umanskaya N, Ross S, Garcia P, Hübner U, Herrmann W. Hyperhomocysteinemia induces a tissue specific accumulation of homocysteine in bone by collagen binding and adversely affects bone. Bone. 2009; 44(3):467-475.  https://doi.org/10.1016/j.bone.2008.10.051
  96. Tyagi N, Kandel M, Munjal C, Qipshidze N, Vacek JC, Pushpakumar SB, Metreveli N, Tyagi SC. Homocysteine mediated decrease in bone blood flow and remodeling: Role of Folic Acid. Journal of Orthopaedic Research. 2011; 29(10):1511-1516. https://doi.org/10.1002/jor.21415
  97. Liu G, Nellaiappan K, Kagan HM. Irreversible inhibition of lysyl oxidase by homocysteine thiolactone and its selenium and oxygen analogues. Implications for homocystinuria. The Journal of Biological Chemistry. 1997;272(51): 32370-32377. https://doi.org/10.1074/jbc.272.51.32370
  98. Renis M, Lobreglio D, Congedo P, Montinaro MC, Muratore M, Lobreglio G. Assessment of Serum Vitamin B12 Levels and Other Metabolic Parameters in Subjects With Different Values of Bone Mineral Density. Journal of Clinical Medicine Research. 2018;10(3):233-239.  https://doi.org/10.14740/jocmr3300w
  99. Zhang H, Tao X, Wu J. Association of homocysteine, vitamin B12, and folate with bone mineral density in postmenopausal women: A meta-analysis. Archives of Gynecology and Obstetrics. 2014;289(5):1003-1009. https://doi.org/10.1007/s00404-013-3075-6
  100. Walmsley AR, Batten MR, Lad U, Bulleid NJ. Intracellular Retention of Procollagen within the Endoplasmic Reticulum Is Mediated by Prolyl 4-Hydroxylase. Journal of Biological Chemistry. 1999;274(21):14884-14892. https://doi.org/10.1074/jbc.274.21.14884
  101. Marini JC, Cabral WA, Barnes AM, Chang W. Components of the Collagen Prolyl 3-Hydroxylation Complex are Crucial for Normal Bone Development. Cell Cycle. 2007;6(14):1675-1681. https://doi.org/10.4161/cc.6.14.4474
  102. Leboy PS, Vaias L, Uschmann B, Golub E, Adams SL, Pacifici M. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes. The Journal of Biological Chemistry. 1989;264(29):17281-17286.
  103. Daniel JC, Pauli BU, Kuettner KE. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. III. Effects of ascorbate. Journal of Cell Biology. 1984;99(6):1960-1969. https://doi.org/10.1083/jcb.99.6.1960
  104. Le Nihouannen D, Barralet JE, Fong JE, Komarova SV. Ascorbic acid accelerates osteoclast formation and death. Bone. 2010;46(5):1336-1343. https://doi.org/10.1016/j.bone.2009.11.021
  105. Malmir H, Shab-Bidar S, Djafarian K. Vitamin C intake in relation to bone mineral density and risk of hip fracture and osteoporosis: a systematic review and meta-analysis of observational studies. The British Journal of Nutrition. 2018;119(8):847-858.  https://doi.org/10.1017/S0007114518000430
  106. Uchiyama S, Yamaguchi M. Inhibitory effect of β-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures. Biochemical Pharmacology. 2004;67(7):1297-1305. https://doi.org/10.1016/j.bcp.2003.11.011
  107. Regu GM, Kim H, Kim YJ, Paek JE, Lee G, Chang N, Kwon O. Association between Dietary Carotenoid Intake and Bone Mineral Density in Korean Adults Aged 30—75 Years Using Data from the Fourth and Fifth Korean National Health and Nutrition Examination Surveys (2008-2011). Nutrients. 2017;9(9):1025. https://doi.org/10.3390/nu9091025
  108. Wang F, Wang N, Gao Y, Zhou Z, Liu W, Pan C, Yin P, Yu X, Tang M. β-Carotene suppresses osteoclastogenesis and bone resorption by suppressing NF-κB signaling pathway. Life Sciences. 2017;174:15-20.  https://doi.org/10.1016/j.lfs.2017.03.002
  109. Yamaguchi M, Uchiyama S. beta-Cryptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Molecular and Cellular Biochemistry. 2004;258(1-2):137-144.  https://doi.org/10.1023/b:mcbi.0000012848.50541.19
  110. Uchiyama S, Yamaguchi M. beta-Cryptoxanthin stimulates cell proliferation and transcriptional activity in osteoblastic MC3T3-E1 cells. International Journal of Molecular Medicine. 2005;15(4):675-681. 
  111. Uchiyama S, Yamaguchi M. beta-cryptoxanthin stimulates cell differentiation and mineralization in osteoblastic MC3T3-E1 cells. Journal of Cellular Biochemistry. 2005;95(6):1224-1234. https://doi.org/10.1002/jcb.20496
  112. Lind T, Lind PM, Jacobson A, Hu L, Sundqvist A, Risteli J, Yebra-Rodriguez A, Larsson S, Rodriguez-Navarro A, Andersson G, Melhus H. High dietary intake of retinol leads to bone marrow hypoxia and diaphyseal endosteal mineralization in rats. Bone. 2011;48(3):496-506.  https://doi.org/10.1016/j.bone.2010.10.169
  113. Marcucci G, Brandi ML. Rare causes of osteoporosis. Clinical Cases in Mineral and Bone Metabolism. 2015;12(2):151-156.  https://doi.org/10.11138/ccmbm/2015.12.2.151
  114. Iwamoto J. Vitamin K2 Therapy for Postmenopausal Osteoporosis. Nutrients. 2014;6(5):1971-1980. https://doi.org/10.3390/nu6051971
  115. Yamaguchi M, Weitzmann MN. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation. International Journal of Molecular Medicine. 2011;27(1):3-14.  https://doi.org/10.3892/ijmm.2010.562
  116. Yamaguchi M, Ma ZJ. Inhibitory effect of menaquinone-7 (vitamin K2) on osteoclast-like cell formation and osteoclastic bone resorption in rat bone tissues in vitro. Molecular and Cellular Biochemistry. 2001;228(1-2):39-47.  https://doi.org/10.1023/a:1013360308946
  117. Hicks J, Garcia-Godoy F, Flaitz C. Biological factors in dental caries: role of remineralization and fluoride in the dynamic process of demineralization and remineralization (part 3). Journal of Clinical Pediatric Dentistry. 2004; 28(3):203-214.  https://doi.org/10.17796/jcpd.28.3.w0610427l746j34n
  118. Booth SL, Tucker KL, Chen H, Hannan MT, Gagnon DR, Cupples LA, Wilson PW, Ordovas J, Schaefer EJ, Dawson-Hughes B, Kiel DP. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. The American Journal of Clinical Nutrition. 2000;71(5):1201-1208. https://doi.org/10.1093/ajcn/71.5.1201
  119. Hara K, Akiyama Y, Nakamura T, Murota S, Morita I. The inhibitory effect of vitamin K2 (menatetrenone) on bone resorption may be related to its side chain. Bone. 1995;16(2):179-184.  https://doi.org/10.1016/8756-3282(94)00027-w
  120. Hiruma Y, Nakahama K, Fujita H, Morita I. Vitamin K2 and geranylgeraniol, its side chain component, inhibited osteoclast formation in a different manner. Biochemical and Biophysical Research Communications. 2004; 314(1):24-30.  https://doi.org/10.1016/j.bbrc.2003.12.051
  121. Koshihara Y, Hoshi K, Okawara R, Ishibashi H, Yamamoto S.Vitamin K stimulates osteoblastogenesis and inhibits osteoclastoge nesis in human bone marrow cell culture. The Journal of Endocrinology. 2003;176(3):339-348.  https://doi.org/10.1677/joe.0.1760339
  122. Notoya K, Yoshida K, Shirakawa Y, Taketomi S, Tsuda M. Similarities and differences between the effects of ipriflavone and vitamin K on bone resorption and formation in vitro. Bone. 1995;16(4 suppl):349-353.  https://doi.org/10.1016/8756-3282(94)00046-3
  123. Mott A, Bradley T, Wright K, Cockayne ES, Shearer MJ, Adamson J, Lanham-New SA, Torgerson DJ. Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporosis International. 2019;30(8):1543-1559. https://doi.org/10.1007/s00198-019-04949-0
  124. Raisz LG. Bone Resorption in Tissue Culture. Factors Influencing the Response to Parathyroid Hormone. Journal of Clinical Investigation. 1965; 44(1):103-116.  https://doi.org/10.1172/JCI105117
  125. Kelly O, Cusack S, Jewell C, Cashman KD. The effect of polyunsaturated fatty acids, including conjugated linoleic acid, on calcium absorption and bone metabolism and composition in young growing rats. The British Journal of Nutrition. 2003;90(4):743-750.  https://doi.org/10.1079/bjn2003951
  126. Casado-Díaz A, Santiago-Mora R, Dorado G, Quesada-Gómez JM. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: potential implication in osteoporosis. Osteoporosis International. 2013; 24(5):1647-1661. https://doi.org/10.1007/s00198-012-2138-z
  127. Coetzer H, Claassen N, van Papendorp DH, Kruger MC. Calcium transport by isolated brush border and basolateral membrane vesicles: role of essential fatty acid supplementation. Prostaglandins, Leukotrienes, and Essential Fatty Acids. 1994;50(5):257-266.  https://doi.org/10.1016/0952-3278(94)90164-3
  128. Baggio B, Budakovic A, Nassuato MA, Vezzoli G, Manzato E, Luisetto G, Zaninotto M. Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis. Kidney International. 2000;58(3):1278-1284. https://doi.org/10.1046/j.1523-1755.2000.00283.x
  129. Gonzalez-Esquerra R, Leeson S. Effects of menhaden oil and flaxseed in broiler diets on sensory quality and lipid composition of poultry meat. British Poultry Science. 2000;41(4):481-488.  https://doi.org/10.1080/713654967
  130. Watkins BA, Lippman HE, Le Bouteiller L, Li Y, Seifert MF. Bioactive fatty acids: role in bone biology and bone cell function. Progress in Lipid Research. 2001;40(1-2):125-148.  https://doi.org/10.1016/s0163-7827(00)00016-3
  131. Watkins BA, Li Y, Lippman HE, Feng S. Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2003;68(6):387-398.  https://doi.org/10.1016/s0952-3278(03)00063-2
  132. Igarashi M, DeMar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI. Docosahexaenoic acid synthesis from α-linolenic acid by rat brain is unaffected by dietary n-3 PUFA deprivation. Journal of Lipid Research. 2007;48(5):1150-1158. https://doi.org/10.1194/jlr.M600549-JLR200
  133. Demar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI. α-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid: α-LNA is not significantly converted to DHA in brain. Journal of Neurochemistry. 2005;94(4):1063-1076. https://doi.org/10.1111/j.1471-4159.2005.03258.x
  134. Metodicheskie rekomendatsii MP 2.3.1.0253-21. Normy fiziologicheskikh potrebnostej v energii i pishchevykh veshchestvakh dlya razlichnykh grupp naseleniya Rossijskoj Federatsii (utv. Federal’noj sluzhboj po nadzoru v sfere zashchity prav potrebitelej i blagopoluchiya cheloveka 22 iyulya 2021 g.). Accessed February 14, 2022. (In Russ.). https://base.garant.ru/402816140
  135. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for vitamin C. EFSA Journal. 2013; 11(11):3418. https://doi.org/10.2903/j.efsa.2013.3418
  136. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for vitamin A. EFSA Journal. 2015; 13(3):4028. https://doi.org/10.2903/j.efsa.2015.4028
  137. Fischbach F, Dunning M. A Manual of Laboratory and Disgnostic Tests. Philadelphia: Wolters Kluwer Health/Lippincott Williams and Wilkins; 2009.
  138. Kish-Trier E, Schwarz EL, Pasquali M, Yuzyuk T. Quantitation of total fatty acids in plasma and serum by GC-NCI-MS. Clinical Mass Spectrometry. 2016;2:11-17.  https://doi.org/10.1016/j.clinms.2016.12.001
  139. Rossijskaya assotsiatsiya endokrinologov. Klinicheskie rekomendatsii: defitsit vitamina D. 2021. Accessed March 16, 2022. (In Russ.). https://rae-org.ru/system/files/documents/pdf/d_2021.pdf
  140. Edinye sanitarno-epidemiologicheskie i gigienicheskie trebovaniya k tovaram, podlezhashchim sanitarno-epidemiologicheskomu nadzoru (kontrolyu). Utverzhdeny Resheniem Komissii tamozhennogo soyuza ot 28 maya 2010 goda No. 299 (s izmeneniyami na 22 fevralya 2022 goda). Accessed March 16, 2022. (In Russ.). https://www.eurasiancommission.org/ru/act/texnreg/depsanmer/sanmeri/Documents/%d1%80%d0%b0%d0%b7%d0%b4%d0%b5%d0%bb%201%20%d0%95%d0%a1%d0%a2.pdf
  141. Galchenko AV, Ranjit R. Vitamin D and its status among vegetarians and vegans. Voprosy biologicheskoj, meditsinskoj i farmatsevticheskoj khimii. 2021; 24(11):20-27. (In Russ.). https://doi.org/10.29296/25877313-2021-11-04
  142. Wu ZJ, Zhao P, Liu B, Yuan ZC. Effect of Cigarette Smoking on Risk of Hip Fracture in Men: A Meta-Analysis of 14 Prospective Cohort Studies. PloS One. 2016;11(12):e0168990. https://doi.org/10.1371/journal.pone.0168990
  143. Jones G, Scott FS. A Cross-Sectional Study of Smoking and Bone Mineral Density in Premenopausal Parous Women: Effect of Body Mass Index, Breastfeeding, and Sports Participation. Journal of Bone and Mineral Research. 1999;14(9):1628-1633. https://doi.org/10.1359/jbmr.1999.14.9.1628
  144. Trevisan C, Alessi A, Girotti G, Zanforlini BM, Bertocco A, Mazzochin M, Zoccarato F, Piovesan F, Dianin M, Giannini S, Manzato E, Sergi G. The Impact of Smoking on Bone Metabolism, Bone Mineral Density and Vertebral Fractures in Postmenopausal Women. Journal of Clinical Densitometry. 2020;23(3):381-389.  https://doi.org/10.1016/j.jocd.2019.07.007
  145. Ugurlu U, Nayki U, Nayki C, Ulug P, Kulhan M, Yildirim Y. Assessment of smoking for low bone mineral density in postmenopausal Turkish women. Wiener Klinische Wochenschrift. 2016;128(3-4):114-119.  https://doi.org/10.1007/s00508-015-0867-7
  146. Guo R, Wu L, Fu Q. Is There Causal Relationship of Smoking and Alcohol Consumption with Bone Mineral Density? A Mendelian Randomization Study. Calcified Tissue International. 2018;103(5):546-553.  https://doi.org/10.1007/s00223-018-0452-y
  147. Lee JH, Hong AR, Kim JH, Kim KM, Koo BK, Shin CS, Kim SW. Amount of smoking, pulmonary function, and bone mineral density in middle-aged Korean men: KNHANES 2008-2011. Journal of Bone and Mineral Metabolism. 2018;36(1):95-102.  https://doi.org/10.1007/s00774-017-0811-1
  148. Ghadimi R, Hosseini SR, Asefi S, Bijani A, Heidari B, Babaei M. Influence of smoking on bone mineral density in elderly men. International Journal of Preventive Medicine. 2018;9:111.  https://doi.org/10.4103/ijpvm.IJPVM_234_16
  149. Melhus H, Michaëlsson K, Holmberg L, Wolk A, Ljunghall S. Smoking, Antioxidant Vitamins, and the Risk of Hip Fracture. Journal of Bone and Mineral Research. 1999;14(1):129-135.  https://doi.org/10.1359/jbmr.1999.14.1.129
  150. Ehnert S, Aspera-Werz RH, Ihle C, Trost M, Zirn B, Flesch I, Schröter S, Relja B, Nussler AK. Smoking Dependent Alterations in Bone Formation and Inflammation Represent Major Risk Factors for Complications Following Total Joint Arthroplasty. Journal of Clinical Medicine. 2019;8(3):406.  https://doi.org/10.3390/jcm8030406
  151. Chakkalakal DA. Alcohol-Induced Bone Loss and Deficient Bone Repair. Alcoholism: Clinical and Experimental Research. 2005;29(12):2077-2090. https://doi.org/10.1097/01.alc.0000192039.21305.55
  152. Mandrekar P, Catalano D, White B, Szabo G. Moderate Alcohol Intake in Humans Attenuates Monocyte Inflammatory Responses: Inhibition of Nuclear Regulatory Factor Kappa B and Induction of Interleukin 10. Alcoholism: Clinical and Experimental Research. 2006;30(1):135-139.  https://doi.org/10.1111/j.1530-0277.2006.00012.x
  153. Choi CK, Kweon SS, Lee YH, Nam HS, Park KS, Ryu SY, Choi SW, Shin MH. Association between alcohol and bone mineral density in a Mendelian randomization study: The Dong-gu study. Journal of Bone and Mineral Metabolism. 2022;40(1):167-173.  https://doi.org/10.1007/s00774-021-01275-6
  154. Cho Y, Choi S, Kim K, Lee G, Park SM. Association between alcohol consumption and bone mineral density in elderly Korean men and women. Archives of Osteoporosis. 2018;13(1):46.  https://doi.org/10.1007/s11657-018-0462-4
  155. Jang HD, Hong JY, Han K, Lee JC, Shin BJ, Choi SW, Suh SW, Yang JH, Park SY, Bang C. Relationship between bone mineral density and alcohol intake: A nationwide health survey analysis of postmenopausal women. PLoS One. 2017;12(6):e0180132. https://doi.org/10.1371/journal.pone.0180132
  156. Asoudeh F, Salari-Moghaddam A, Larijani B, Esmaillzadeh A. A systematic review and meta-analysis of prospective cohort studies on the association between alcohol intake and risk of fracture. Critical Reviews in Food Science and Nutrition. 2021;1-15. Online ahead of print. https://doi.org/10.1080/10408398.2021.1888691
  157. Yi SS, Chung S-H, Kim PS. Sharing Pathological Mechanisms of Insomnia and Osteoporosis, and a New Perspective on Safe Drug Choice. Journal of Menopausal Medicine. 2018;24(3):143-149.  https://doi.org/10.6118/jmm.2018.24.3.143
  158. Tong Q, Wu W, Wu Q, Yu Y, Lv X, Wang B, Wang G. Sleep onset latency is related with reduced bone mineral density in elderly people with insomnia: a retrospective study. Clinical Interventions in Aging. 2018;13:1525-1530. https://doi.org/10.2147/CIA.S161922

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.