Контроль качества образцов сыворотки и плазмы крови для научных исследований
Журнал: Профилактическая медицина. 2019;22(5): 91‑97
Прочитано: 12729 раз
Как цитировать:
В последние годы все больше публикаций посвящено анализу качества научных работ, в частности проблеме низкой воспроизводимости результатов исследований [1]. В связи с этим актуальны усилия, направленные на повышение стандартизации преаналитического этапа научных исследований, а также подробное описание всех деталей этого этапа.
Контроль качества (КК) биообразцов, применяемых для научных исследований, имеет принципиально важное значение для обеспечения достоверности получаемых данных. Однородность процедур сбора, транспортировки и условий хранения биообразцов имеет решающее значение для обеспечения качества многоцентровых научных исследований.
Важным и эффективным инструментом для такой стандартизации и сохранения большого количества биологических образцов является создание биобанка. Биобанк — структура для сбора, хранения и поставки биологических образцов и связанных с ними данных, которая следует стандартным операционным процедурам и предоставляет материалы для научного использования [2].
Все биообразцы подвергаются процедурам сбора, транспортировки, пробоподготовки и хранения. Процедуры в биобанке выполняются строго по принятым стандартам, в противном случае может снизиться качество биообразцов. Забор биоматериала осуществляется медицинским персоналом по стандартной методике в соответствии с п. 3.2 ГОСТ 53079.4 — 2008 [3]. Далее биоматериал вместе с необходимыми документами транспортируется в биобанк, где осуществляется пробоподготовка и регистрация полученного биоматериала (рис. 1). 
Пробоподготовка крови включает центрифугирование и дальнейшее аликвотирование сыворотки или плазмы крови. В соответствии со стандартом необходимо выполнить центрифугирование крови не позднее, чем через 1 ч после забора. Затем аликвотированный биоматериал помещается на хранение в морозильные камеры при температуре –80 °С.
Процедуры КК предназначены для оценки данных и биообразцов, используемых в научных исследованиях. КК данных включает контроль демографической, клинической информации, точность обработки данных, в то время как КК биологических образцов включает анализы на подлинность, целостность и идентичность образцов [1]. КК биологических образцов необходим для обеспечения точной характеристики и категоризации образцов, а также для избежания ошибок в последующих исследованиях из-за внутренней неоднородности в образцах.
Процедуры КК могут осуществляться биобанком, конечным пользователем или лабораторией субподрядчиков и должны выполняться с соблюдением правил GLP (Good Laboratory Practice, Надлежащая лабораторная практика) или стандартов ISO 15189:2012 (Медицинские лаборатории — особые требования к качеству и компетентности), ISO 17025:2005 или CLIA (Clinical laboratory improvement amendments, Поправки к клиническим лабораторным улучшениям) [4—6].
Ретроспективный КК может быть применен либо к случайно выбранным образцам, либо к образцам, качество которых вызывает наибольшее сомнение. Первый подход позволяет сравнивать различные места сбора, а второй позволяет целенаправленно оценивать образцы с «наибольшим риском» [2].
Контроль качества биологических образцов является важным элементом в научных исследованиях. В настоящее время отсутствует консенсус относительно оптимальных инструментов КК образцов (маркеры и анализы). Инструменты К.К. можно разделить на два типа: диагностические и прогностические [7].
Диагностические инструменты оценивают этапы обработки биологического образца (задержка обработки образца, время или тип фиксации, продолжительность хранения) [7]. Прогностические инструменты оценивают выполнимость и/или надежность последующего анализа на данных образцах. Это особенно важно для методов с высокой пропускной способностью, поскольку прогностические инструменты предсказывают успешную производительность метода (рис. 2) 
Наиболее легко применимыми инструментами являются маркеры с известным порогом для преаналитического отклонения и известным эталонным диапазоном для аналита К.К. Было выявлено лишь несколько значимых маркеров, соответствующих этим критериям: CD40L (маркер воспаления) для оценки качества сыворотки при повышенных температурах и VEGF (фактор роста эндотелия сосудов) для оценки замораживания–оттаивания сыворотки [1]. Для полной оценки качества биообразца необходимо использовать несколько маркеров КК. В статье представлены наиболее перспективные инструменты КК биологических образцов, которые были определены группой экспертов международного сообщества ISBER (International society for biological and environmental repositories) [7, 9].
Одной из задач биобанкирования является предоставление гарантии того, что образец действительно соответствует требуемым параметрам. Например, когда биобанк предоставляет биообразцы для исследований от пациентов с какими-либо заболеваниями, необходимо точно знать, возможно ли провести исследования на выявление того или иного маркера, который соответствует данному заболеванию.
Соблюдение температурных и временныˊх рамок на этапе прецентрифугирования, центрифугирования и хранения очень важно. В противном случае некоторые маркеры могут деградировать, и данные образцы станут непригодными для ряда ценных исследований. В связи с этим важны как процедуры строгой документации всего «жизненного цикла биообразца», так и процедуры КК, которые позволяют определить временныˊе характеристики этапов пробоподготовки в случае необходимости. Кроме того, при использовании биоматериала для изучения определенных заболеваний возможна оценка ряда параметров, показывающих пригодность конкретных биообразцов для исследований в данной сфере.
Далее в статье будут приведены основные известные на данный момент процедуры определения качества биообразцов сыворотки и плазмы, в том числе их пригодность для исследований в различных научно-медицинских сферах.
Контроль качества образцов сыворотки крови по параметру времени перед центрифугированием
Рецептор трансферрина. R. De Jongh и соавт. [8, 9] показали увеличение концентрации растворимого рецептора трансферрина, измеренного методом иммуноферментного анализа (ИФА), на 90% после 8-часовой задержки прецентрифугирования, и сообщили о рефе-рентном диапазоне от 171 до 212 Ед/мл.
Аскорбиновая кислота. A. Karlsen и соавт. [10] предложили измерять показатель аскорбиновой кислоты в качестве потенциального инструмента КК сыворотки и плазмы методом хроматографии. Показано 70% снижение уровня аскорбиновой кислоты после 6-часовой задержки прецентрифугирования крови при комнатной температуре, а также 100% снижение после 3 мес хранения при –20 °С. Из клинической химии известно, что референсный диапазон составляет от 26 до 85 мкмоль/л [11].
Калий. M. Heins и соавт. [12] показали, что задержка прецентрифугирования крови при 4 °C вызывает резкое повышение концентрации калия примерно на 200% через 1 день и до 500% через 7 дней задержки обработки. Увеличение было меньшим после задержки при комнатной температуре (из-за температурнозависимой активности Na+-/K+-АТФазы). Среднее базовое значение, измеренное косвенной потенциометрией, составляет 3,92 ммоль/л, а стандартный эталонный диапазон — от 3,29 до 4,50 ммоль/л [13].
Также можно проверить условия предварительного центрифугирования и убедиться, что образец пригоден для анализа путем измерения уровня белка IL8. Уровень IL8 выше 125 пг/мл или выше 528 пг/мл указывает на задержку перед центрифугированием при комнатной температуре, превышающей 24 ч или 48 ч соответственно [9, 14].
Контроль качества образцов сыворотки крови по параметру времени после центрифугирования. Можно проверить условия после центрифугирования и убедиться, что образец пригоден для протеомного анализа, измерив концентрацию sCD40L с помощью ИФА. Если концентрация sCD40L ниже 4720 пг/мл, то образец после центрифугирования выдерживали при комнатной температуре в течение 24 ч и более; если ниже 1693 пг/мл — в течение 48 ч и более [9].
Условия хранения. VEGF. K. Kisand и соавт. [15] недавно показали, что VEGF в сыворотке является лабильным к размораживанию—оттаиванию и длительности хранения либо при –20 °C, либо при –80 °C. При измерении VEGF с помощью ELISA после 1—6 циклов замораживания—оттаивания маркер переставал обнаруживаться. Тесты ускоренного старения и графики Аррениуса позволяют провести экстраполяцию для предсказания того, что VEGF не будет обнаружен после 11 мес хранения при –20 °C или после 4,5 года хранения при –80 °C. Контрольный диапазон VEGF, сообщаемый производителями наборов для ИФА (например «R & D Systems, Inc.», вкладыш в упаковку: Иммуноанализ Quantikine Human Total MMP7; Миннеаполис, Миннесота), составляет от 62 до 707 пг/мл в сыворотке. Однако эти результаты не были подтверждены на плазме [16].
Контроль качества образцов плазмы крови ЭДТА по параметру времени до центрифугирования
GM-CSF, IL-1α и G-CSF. S. Ayache и соавт. [17] выполнили ИФА для изучения общего профиля хемокинов и цитокинов в плазме ЭДТА, собранной с ингибиторами протеазы или без них. Двухчасовая задержка прецентрифугирования при комнатной температуре вызвала 11–20-кратное увеличение GM-CSF, IL-1α и G-CSF в крови, собранной без ингибиторов протеазы, и 7–10-кратное увеличение тех же белков в крови, собранной с ингибиторами протеазы. Базовые контрольные уровни были зарегистрированы как 214±163 пг/мл для GM-CSF, 9,4±7,7 пг/мл для IL-1α и 119±60 пг/мл для G-CSF.
Можно проверить условия предварительного центрифугирования и убедиться, что образец пригоден для целей метаболического анализа:
а) используя ферментативный анализ LacaScore, если LacaScore ниже 5, то образец выдерживали при комнатной температуре менее 3 ч;
б) с использованием метода METANOMICS GC-MS, если показатель MxP равен или превышает 90, то образец выдерживали при комнатной температуре менее 2 ч; если в диапазоне 89—70, то в течение 2—6 ч; если ниже 70, то образец хранился при комнатной температуре более 6 ч [9].
Также можно проверить задержку перед центрифугированием и убедиться, что образец пригоден для протеомного, метаболического анализа, анализа cfDNA или ccfRNA, путем измерения концентрации IL16 с помощью ELISA. Если концентрация IL16 выше чем 313 пг/мл или выше чем 897 пг/мл, время задержки перед центрифугированием при комнатной температуре было больше чем 24 или 48 ч соответственно [9, 14].
Аскорбиновая кислота. Одним из методов проверки времени задержки перед центрифугированием является измерение аскорбиновой кислоты методом хроматографии, также как в случае сыворотки крови (см. раздел 2.1.1.).
Контроль качества образцов плазмы крови ЭДТА по параметру времени после центрифугирования. Можно проверить условия после центрифугирования и убедиться, что образец пригоден для протеомного анализа:
а) путем измерения концентрации sCD40L с помощью ИФА — если концентрация ниже 185 пг/мл, пробу выдерживали при комнатной температуре более 48 ч;
б) измерение пептида компонента 3 комплемента (C3f) и компонента 4 комплемента (C4) с использованием MALDI-TOF-MS или LC-ESI-MS; если возможно обнаружить пик для C4 при 1896,1 m/z и пик для C3f при 2021,1 m/z, образец выдерживали при комнатной температуре более 4 ч [9].
Условия хранения
Витамин Е. M. Ockè и соавт. [18] сообщили, что содержание витамина Е в плазме ЭДТА уменьшилось более чем на 90%, когда плазма хранилась более 24 мес при –20 °C. Аналитическим методом была высокоэффективная жидкостная хроматография. Референсный диапазон составляет от 19 до 31 мкмоль/л.
Контроль качества образцов цитратной плазмы по параметру времени перед центрифугированием. Можно проверить время до этапа центрифугирования и убедиться, что образец пригоден для анализа белков, путем измерения активности фактора VIII (фактор свертывания крови): активность белка С с использованием анализа активности коагуляции. Если активность ниже 50 МЕ/дл, образец выдерживали при 4 °C более 24 ч [9].
Также можно проверить задержки перед центрифугированием и убедиться, что образец пригоден для протеомного анализа, измеряя концентрацию интерлейкина-8 (ИЛ-8) с помощью ИФА. Если концентрация ИЛ-8 превышает 21,5 пг/мл, время предварительного центрифугирования при комнатной температуре превышает 48 ч [9].
Контроль качества образцов цитратной плазмы по параметру времени после центрифугирования. Можно проверить время, прошедшее после центрифугирования до замораживания, и убедиться, что образец пригоден для протеомного анализа следующим методом: измерение пептида компонента 3 комплемента (C3f) и компонента 4 комплемента (C4) с использованием MALDI-TOF-MS или LC-ESI-MS. Если возможно обнаружить пик для C4 при 1896,1 m/z и пик для C3f при 2021,1 m/z, образец выдерживали при комнатной температуре более 4 ч. Использование таких образцов для протеомного анализа невозможно [9].
Условия хранения. Проверку условий хранения цитратной плазмы можно осуществить методом измерения активности белка S с помощью анализа активности коагуляции: если активность ниже 50%, образец хранился при –80 °C более 9 лет [9].
Сыворотка крови
Гемолиз. Можно проверить наличие Hb-загрязнения и убедиться, что образец пригоден для протеомного анализа или анализа на основе микроРНК с помощью ELISA или спектрофотометрии. Если концентрация Hb выше 50 мг/л, произошел гемолиз, проба считается загрязненной Hb [9].
Воспаление. Проверить наличие маркера воспаления в образце можно, измерив концентрацию С-реактивного белка (СРБ) с помощью ИФА или нефелометрии. Если концентрация выше 10 мг/л, образец показывает наличие воспаления [9].
Пригодность для исследования сердечно-сосудистых заболеваний. Для установления пригодности для исследований необходимо измерить:
а) уровень BNP, NT-proBNP, используя ИФА;
б) уровень ANFPTL3, используя ИФА или электрохемилюминесцентный иммуноанализ;
в) уровень СК-MB и ET-1, используя ИФА;
г) ММР-3 и уровень ММР-9 с использованием ИФА;
д) уровень тропонина I и тропонина Т с использованием ИФА или электрохемилюминесцентного иммуноанализа.
Эти белки должны выявляться, чтобы образец можно было использовать в исследованиях сердечно-сосудистых заболеваний [9].
Пригодность для исследования заболеваний печени. Необходимо измерить уровни аланинаминотрансферазы (АЛТ) с помощью флюороиммуноанализа. АЛТ должен быть обнаружим, чтобы проба подходила для исследования заболеваний печени [9].
Пригодность с целью исследования аутоиммунитета. Для исследований необходимо определить уровень фактора некроза опухоли-α (TNF-α) с помощью чувствительного ИФА. TNF-α должен быть обнаружим, чтобы образец соответствовал критериям исследования аутоиммунитета [9].
Пригодность для исследований в области эндокринологии и диабета. Необходимо измерить уровень пептида инсулина C и инсулина как предшественника фактора роста II с помощью ИФА, флюороимуноанализа или радиоиммуноанализа; уровень альдостерона и соматомедина С с помощью ИФА. Эти белки должны быть обнаружены, чтобы образец соответствовал исследованиям в области эндокринологии [9].
Пригодность для исследования воспаления и иммунологии. Необходимо измерить уровень комплемента C с помощью нефолометрии или энзиматического иммуноанализа; уровень ICAM-1и TNF-α с помощью энзиматического иммуноанализа. Эти белки должны быть обнаружены, чтобы образец соответствовал исследованиям в области воспаления и иммунологии [9].
Пригодность с целью исследования в онкологии. Для проверки необходимо: использовать ИФА M65 EpiDeath; измерить уровень VCAM-1 с помощью ИФА. Эти белки должны обнаруживаться, чтобы образец соответствовал исследованиям в области онкологии [9].
Пригодность для целей исследований в области заболеваний опорно-двигательного аппарата. Необходимо измерить уровень MID-остеокальцина, остеокальцина и кальцитонина, а также С-терминального телопептида и коллагена типа 1, интактного паратиреоидного гормона (ПТГ) с помощью ИФА или электрохемилюминесцентного иммуноанализа. Эти белки должны быть обнаружены для того, чтобы образец мог быть использован в исследованиях в области заболеваний опорно-двигательного аппарата [9].
Пригодность для исследования в области питания. Необходимо измерить уровень витамина B12 с помощью электрохемилюминесцентного иммуноанализа. Витамин B12 должен быть обнаружим, чтобы образец соответствовал критериям исследования питания [9].
Пригодность для исследования нейродегенеративных заболеваний. Для установления пригодности для подобных исследований необходимо измерить уровень амилоида Aβ42 с помощью ИФА; нейрон-специфический уровень энолазы с помощью иммуноанализа Kryptor, ИФА или электрохемилюминесцентного иммуноанализа. Эти белки должны обнаруживаться, чтобы образец соответствовал исследованиям нейродегенеративных заболеваний [9].
Плазма крови (ЭДТА и цитратная)
Контаминация тромбоцитами. Проверить наличие тромбоцитов и убедиться, что образец пригоден для анализа на микрочастицы или ccfRNA, можно, выполнив подсчет клеток. Если концентрация тромбоцитов ниже 104/мл, считается, что отсутствует значимая контаминация образца плазмы тромбоцитами [9].
Активация тромбоцитов. Также можно проверить активацию тромбоцитов и убедиться, что образец пригоден для исследования биомаркеров, на которые влияет активация тромбоцитов путем измерения концентрации β-тромбоглобулина (βTG) с помощью ELISA. Если концентрация выше 200 нг/мл, происходит активация тромбоцитов [9].
Гемолиз. Проверить наличие загрязнения Hb и убедиться, что образец пригоден для протеомного анализа или анализа микроРНК, можно, выполнив ELISA или спектрофотометрию. Если концентрация Hb выше 20 мг/л, произошел гемолиз и проба считается загрязненной Hb [9].
Воспаление. Проверить выраженность воспаления в образце можно, измерив концентрацию СРБ с помощью ИФА или нефелометрии. Концентрация выше 10 мг/л свидетельствует о воспалении [9].
Пригодность для исследования сердечно-сосудистых заболеваний. Для установления пригодности для исследований необходимо измерить уровень тропонина I и тропонина Т, используя ИФА или электрохемилюминесцентный иммуноанализ; уровень вазоактивного интестинального пептида (VIP), используя ИФА.
Эти белки должны быть обнаружены, чтобы образец соответствовал исследованиям сердечно-сосудистых заболеваний [9].
Пригодность для исследования липидного обмена. Для проверки можно измерить уровни активности белка-переносчика CETР с помощью флюороиммуноанализа. CETP должен быть обнаружим, чтобы проба соответствовала требованиям для исследования липидного обмена/липидомного анализа [9].
Пригодность для исследования аутоиммунитета. Для данного исследования можно измерить TNF-α с помощью чувствительного ИФА. TNF-α должен быть обнаружим, чтобы образец соответствовал критериям исследования аутоиммунитета [9].
Пригодность для целей исследований в области эндокринологии, включая диабет. Для оценки пригодности можно измерить уровень глюкагоноподобного пептида 1, используя ИФА или радиоиммуноанализ; уровень аденокортикотропного гормона, используя электрохемилюминесцентный иммуноанализ или радиоиммуноанализ; уровень альдостерона и соматомедина С, используя ИФА.
Эти белки должны быть обнаружены, чтобы образец соответствовал исследованиям в области эндокринологии, включая сахарный диабет [9].
Пригодность для исследования воспаления и иммунологии. Для проверки можно измерить: уровни комплемента С с помощью нефолометрии или энзиматического иммуноанализа; уровень ICAM-1 с помощью энзиматического иммуноанализа. Эти белки должны быть обнаружены, чтобы образец соответствовал исследованиям воспаления и иммунологии [9].
Пригодность для целей исследований заболеваний опорно-двигательного аппарата. Необходимо измерить уровень C-терминального телопептида и коллагена I типа, используя ИФА или электрохемилюминесцентный иммуноанализ. Эти белки должны обнаруживаться, чтобы образец мог быть использован для исследований в области заболеваний опорно-двигательного аппарата [9].
Пригодность для исследования нейродегенеративных заболеваний. Для установления пригодности для исследований можно измерить уровень амилоида Aβ42 с помощью ИФА. Aβ42 должен быть детектируемым, чтобы проба подходила для исследования нейродегенеративных заболеваний [9].
Пригодность для исследования коагуляции (только для цитратной плазмы). Для проверки можно измерить уровень антифактора Ха и фибриногена; фрагменты протромбина 1 и 2 и активность ингибитора активатора плазминогена типа 1 или антиген с использованием ИФА; анализ образования тромбина с использованием флюороиммуноанализа; антиген ТРА с использованием ИФА. Эти белки должны обнаруживаться, чтобы образец соответствовал необходимому качеству для изучения процесса коагуляции [9].
Высокое качество биоматериалов и связанных с ними данных имеет важнейшее значение для достижения надежных и воспроизводимых научных результатов. Результаты исследований, приведенные в данном обзоре, свидетельствуют об изменении качества биоматериала при нарушении правил на любой стадии преаналитического этапа. Для обеспечения необходимого качества образцов сыворотки и плазмы крови могут использоваться специальные методы целенаправленного К.К. Такой К.К. может осуществляться как на этапе поступления биообразцов в биобанк, так и на этапе непосредственного применения биоматериала, пуска в работу в рамках конкретного научного проекта. Процессы сбора, обработки, хранения и выдачи биоматериалов должны быть проведены и задокументированы по стандартам. Именно выполнение стандартов всех стадий преаналитического этапа гарантирует должное качество биообразцов. При необходимости (в случае сомнения в качестве биоматериала) следует использовать методы оценки качества. В настоящее время процесс поиска маркеров качества биообразцов продолжается в ведущих биобанках мира. Наиболее значимые результаты в этой области получают специалисты отдела КК биобанка Люксембурга (IBBL) [19].
Наличие биобанка в структуре научного процесса обеспечивает жесткое соблюдение стандартизированных условий проведения преаналитического этапа и играет ключевую роль в контроле и гарантии качества биообразцов, предназначенных для научных исследований.
Авторы заявляют об отсутствии конфликта интересов.
The authors declare no conflict of interest.
Сведения об авторах
Сивакова О.В. — https://orcid.org/0000-0001-5397-5387; e-mail: osivakova@gnicpm.ru
Покровская М.С. — https://orcid.org/0000-0001-6985-7131; e-mail: mpokrovskaya@gnicpm.ru
Ефимова И.А. — https://orcid.org/0000-0002-3081-8415; e-mail: irishka90910@yandex.ru
Мешков А.Н. — https://orcid.org/0000-0001-5989-6233; e-mail: meshkov@lipidclinic.ru
Метельская В.А. — https://orcid.org/0000-0001-8665-9129; e-mail: vmetelskaya@gnicpm.ru
Драпкина О.М. — https://orcid.org/0000-0002-4453-8430; e-mail: drapkina@bk.ru
Автор, ответственный за переписку: Сивакова Оксана Викторовна — e-mail: osivakova@gnicpm.ru
КАК ЦИТИРОВАТЬ:
Сивакова О.В., Покровская М.С., Ефимова И.А., Мешков А.Н., Метельская В.А., Драпкина О.М. Контроль качества образцов сыворотки и плазмы крови для научных исследований. Профилактическая медицина. 2019;22(5):91-97. https://doi.org/10.17116/profmed20192205191
Подтверждение e-mail
На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.
Подтверждение e-mail
Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.