Влияние женских половых гормонов на функционирование белка-транспортера гликопротеина-Р
Журнал: Проблемы эндокринологии. 2018;64(3): 144‑150
DOI: 10.14341/probl9545
Прочитано: 1912 раз
Как цитировать:
Гликопротеин-Р (Pgp, ABCB1-белок) — АТФ-зависимый белок-транспортер, локализующийся в цитоплазматической мембране гепатоцитов, энтероцитов тонкого и толстого кишечника, эпителиоцитов почечных канальцев, эндотелиальных клеток гистогематических барьеров, а также опухолевых клеток. Во всех них он выполняет одну и ту же функцию: выводит ксено- и эндобиотики во внеклеточное пространство, биологические жидкости (кровь, желчь или мочу) и просвет кишечника. Таким образом, Pgp играет важную роль в фармакокинетике (всасывание, распределение и выведение) лекарственных средств — его субстратов, транспорте эндогенных веществ (например, стероидных и тиреоидных гормонов) и формировании резистентности опухолевых клеток к химиотерапии [1].
Функциональная активность Pgp меняется под влиянием различных факторов. Ряд веществ — индукторы (рифампицин, глюкокортикостероиды, тироксин) повышают активность этого белка-транспортера, что может снижать эффективность терапии субстратами Pgp (дигоксин, дабигатрана этексилат, статины и др.), тогда как ингибиторы (верапамил, амиодарон, кетоконазол) снижают активность Pgp, что может приводить к относительной передозировке его субстратов [2]. Способность лекарственных средств ингибировать функциональную активность Pgp можно использовать в терапии онкологических заболеваний с целью преодоления множественной лекарственной устойчивости, обусловленной повышенной активностью данного белка-транспортера [3].
В исследованиях in vitro на различных клеточных линиях были получены противоречивые результаты относительно влияния женских половых гормонов на функциональную активность и экспрессию Pgp. Так, на клетках линии LS180 (клетки рака толстой кишки человека) было показано, что эстрогены и прогестерон в концентрации 50 мкМ повышают экспрессию мРНК гена MDR1, кодирующего белок-транспортер [4]. В то же время на клетках рака молочной железы, трансдуцированных геном MDR1, эстрадиол в концентрациях 10 пМ — 10 нМ снижал уровень Pgp [5]. На линиях клеток L-MDR1 и P388/dx было показано, что прогестерон ингибирует активность белка-транспортера в концентрации 13,3±3,2 и 30,2±9,8 мкМ соответственно [6]. Прогестерон в концентрации 50 мкМ также снижал функциональную активность Pgp на клеточной линии, резистентной к винбластину, о чем свидетельствовало повышение накопления в клетках винбластина (субстрата Pgp) в 4—5 раз [7]. Следует отметить, что in vitro использовались концентрации гормонов, существенно превышающие их сывороточные уровни в организме человека и животных (3·10–9 М). Кроме того, не изучалось совместное действие эстрадиола и прогестерона.
В женском организме на протяжении менструального цикла концентрации половых гормонов постоянно меняются. Это позволяет предположить изменение функционирования Pgp в различные фазы цикла, что может повлиять на фармакокинетику лекарственных средств — субстратов белка-транспортера. Такое предположение косвенно подтверждается противоречивостью данных о половых различиях в фармакокинетике субстратов Pgp (верапамила, циклоспорина и др.), что может быть связано с разными фазами цикла у включенных в исследование женщин [8].
Цель исследования — изучить в эксперименте влияние физиологических концентраций эстрадиола и прогестерона на функциональную активность Pgp на уровне целостного организма.
Проведено экспериментальное проспективное контролируемое исследование с участием лабораторных животных.
Работа выполнена на 17 половозрелых кроликах-самках породы шиншилла массой 3000—3500 г. Все животные на момент включения в исследование достигли половой зрелости и находились в состоянии течки (полиэструс).
Животные были получены из питомника ОАО «Касимов—Миакро», имели необходимые ветеринарные свидетельства и содержались в стандартных условиях вивария ФГБОУ ВО РязГМУ Минздрава России. Работа с животными проводилась в соответствии с правилами лабораторной практики (приказ МЗ РФ № 199н от 01.04.16).
Исследование проведено в 2017 г., продолжительность исследования для каждого животного составила 47 сут.
Животные были разделены на три группы.
1-й (контрольной) группе кроликов (n=5) была проведена «ложная операция», заключающаяся во вскрытии кожных покровов и подкожной жировой клетчатки передней брюшной стенки с последующим послойным ушиванием раны. 2-й группе животных (n=6) выполняли овариэктомию. 3-й группе кроликов (n=6) проводили овариэктомию и с 14-х послеоперационных суток в течение 14 дней вводили эстрадиол по 0,5 мг/кролик, а затем комбинацию эстрадиола (0,5 мг/кролик) и прогестерона (5 мг/кролик) также в течение 14 сут.
Эстрадиол (прогинова, «Bayer», Германия) и прогестерон (утрожестан, «Besins Healthcare», Бельгия) вводили кроликам per os 1 раз в день. Подобная схема эксперимента имитирует менструальный цикл, когда во время менструации концентрация эстрогенов и прогестерона в крови снижается, в фолликулярную фазу концентрация эстрогенов возрастает, а в лютеиновую фазу увеличивается содержание как эстрогенов, так и прогестерона в крови.
Овариэктомию и «ложную операцию» выполняли в условиях операционной вивария РязГМУ под наркозом, который осуществляли в/м введением ксилазина гидрохлорида (рометар, СПОФА, Чехия) в дозе 4,0—6,0 мг/кг массы и золетила-50 («Virbac», Франция) в дозе 5—10 мг/кг массы.
За 7 дней до начала исследования, а также на 14, 28 и 42-е сутки после оперативного вмешательства у животных всех групп определяли функциональную активность Pgp (по фармакокинетике маркерного субстрата).
Дополнительно у животных в указанные сроки определяли сывороточную концентрацию половых гормонов (тестостерона, эстрадиола, прогестерона).
Функциональную активность Pgp оценивали по фармакокинетике фексофенадина (аллегра, «Sanofy Aventis», Франция) после его однократного перорального введения (67,5 мг/кг массы, в объеме 5 мл) в виде водной суспензии [9, 10]. Фексофенадин не подвергается биотрансформации и его фармакокинетика зависит преимущественно от активности данного белка-транспортера. Накопление фексофенадина в организме свидетельствует об ингибировании Pgp, а снижение содержания — об индукции Pgp.
Для определения концентрации фексофенадина кровь в объеме 5 мл забирали из краевой вены уха кролика в гепаринизированные пробирки через 1, 2, 3, 4, 5, 6, 12 и 24 ч после введения препарата. Образцы крови центрифугировали (1000 g, 10 мин), полученную плазму хранили до анализа при –29 °С в течение месяца. Концентрацию фексофенадина в плазме определяли на высокоэффективном жидкостном хроматографе Стайер с УФ-спектрофотометрическим детектором UVV 104 при длине волны 220 нм с применением обращенно-фазовой хроматографической колонки Ultrasphere 4,6×250 мм (зернение 5 мкм) фирмы «Beckman Coulter». Фексофенадин экстрагировали из плазмы с помощью дихлорметана (ACROS ORGANICS), этилацетата (ACROS ORGANICS) и диэтилового эфира (ХИММЕД). Элюирование выполняли подвижной фазой следующего состава (на 200 мл): 64 мл ацетонитрила, 133,7 мл бидистиллированной воды, содержащей 2,33 мл ледяной уксусной кислоты (ХИММЕД) и 0,936 мл триэтиламина (ACROS ORGANICS) [9, 10]. Триэтиламином доводили pH подвижной фазы до 5,0. Время удерживания пика фексофенадина составило 12,6 мин.
С использованием модельнонезависимого метода [11] рассчитывали следующие фармакокинетические параметры фексофенадина: Cmax — максимальная концентрация (нг/мл), AUC0—t — площадь под фармакокинетической кривой концентрация — время от нуля до времени последнего забора крови (нг×ч/мл); Сl — общий клиренс (л/ч). Концентрацию половых гормонов определяли в ЦНИЛ РязГМУ радиоиммунным методом с применением стандартной тест-системы производства IMMUNOTECH (Чехия) с дальнейшей обработкой полученных результатов на анализаторе Иммунотест (Россия).
Протокол исследования был рассмотрен и утвержден на заседании локального этического комитета ФГБОУ ВО РязГМУ Минздрава России № 12 от 08.04.16.
Принципы расчета размера выборки: количество животных, использованных в исследовании, обусловлено их числом, минимально необходимым для экспериментальных фармакокинетических исследований [12].
Методы статистического анализа данных. Полученные результаты обрабатывали с помощью программы StatSoft Statistica 7.0 (США). Достоверность различий между показателями гормонального статуса животных оценивали с помощью критерия Фридмана. При наличии статистической значимости парные сравнения выполняли по критерию Вилкоксона. Полученные результаты представлены в виде медианы, нижнего и верхнего квартилей. Статистическую значимость различий между фармакокинетическими параметрами фексофенадина оценивали, исходя из представления о лог-нормальном распределении данных. Сравнение изучаемых фармакокинетических параметров проводили с помощью дисперсионного анализа (ANOVA) после их логарифмирования. Различия с исходными показателями внутри групп и межгрупповые сравнения выполняли по критерию множественного сравнения Фишера. Полученные результаты представлены в таблицах в виде среднего геометрического и его 95% доверительного интервала (ДИ). Различия считали статистически значимыми при р<0,05.
Зависимость между показателями гормонального фона животных 2-й и 3-й групп от фармакокинетических параметров фексофенадина оценивали с помощью коэффициента корреляции Пирсона (Rs).
Дополнительно рассчитывали двусторонний 90% ДИ отношения средних геометрических фармакокинетических параметров фексофенадина на фоне воздействия к параметрам интактных животных (внутри групп), а также 90% ДИ отношения средних геометрических фармакокинетических параметров фексофенадина на фоне воздействия (кролики 3-й группы) к параметрам животных, после овариэктомии (кролики 2-й группы). Согласно U.S. Food and Drug Administration, Center for Drug Evaluationand Research, значимыми считаются различия между фармакокинетическими параметрами, если двусторонний 90% ДИ их отношения находится за пределами диапазона 0,8—1,25 (80—125%), поскольку изменение фармакокинетических параметров только более чем на 25% может привести к изменению фармакодинамики препаратов.
Все животные завершили исследование и вошли в итоговый анализ.
Концентрации половых гормонов (тестостерон, прогестерон и эстрадиол) в сыворотке у животных различных групп до начала эксперимента не различались. При выполнении «ложной» операции гормональный статус кроликов существенно не изменялся на протяжении всего эксперимента.
У животных 2-й группы (изолированная овариэктомия) по сравнению с исходными показателями отмечалось значимое снижение (на 29,7%; p=0,028) уровня эстрадиола на 42-е сутки после операции (рис. 1), 

У кроликов 3-й группы (введение эстрадиола и прогестерона на фоне овариэктомии) концентрация эстрадиола на протяжении всего эксперимента статистически значимо не отличалась от исходных показателей (до овариэктомии) и превышала значения кроликов 2-й группы (изолированная овариэктомия) на 42-е сутки эксперимента на 62,3% (p=0,004) (см. рис. 2). Уровень прогестерона снижался на 14-е сутки исследования на 46,9% (p=0,028), на 28-е сутки — на 88,1% (p=0,028), а на 42-е сутки повышался на 168,5% (p=0,046). В этот срок концентрация прогестерона у животных 3-й группы превышала показатели животных 2-й группы на 500,0% (p=0,002).
Концентрация тестостерона у животных всех исследуемых групп на протяжении всего эксперимента значимо не менялась.
Функциональную активность Pgp оценивали по фармакокинетике его маркерного субстрата — фексофенадина. Фексофенадин не подвергается биотрансформации, и его фармакокинетика зависит от данного белка-транспортера. Накопление фексофенадина в организме кроликов (повышение Cmax и AUC0–t) и снижение его выведения (уменьшение Cl) свидетельствуют о снижении функциональной активности Pgp в организме, а противоположные изменения показателей — о возрастании активности Pgp.
Фармакокинетические параметры фексофенадина у животных разных групп до начала эксперимента не различались (см. таблицу). 
В группе ложнооперированных животных фармакокинетические параметры фексофенадина значимо не отличались от исходных показателей на протяжении всего эксперимента, что свидетельствует об отсутствии изменения активности Pgp в организме.
У животных второй группы (изолированная овариэктомия) на 14-е послеоперационные сутки Cmax фексофенадина возрастала в 1,61 раза (90% ДИ 1,09—2,38; p=0,039), AUC0—t — в 1,56 раза (90% ДИ 1,08—2,24; p=0,05), а Cl снижался в 0,325 раза (90% ДИ 0,12—0,95; p=0,036) по сравнению с исходными показателями. На 28-е сутки отмечалось снижение Cl в 0,52 раза (90% ДИ 0,31—0,87; p=0,07) по сравнению с параметрами до операции. На 42-е сутки отмечалось увеличение Cmax фексофенадина в 2,43 раза (90% ДИ 1,87—3,15; p=0,0008), AUC0—t — в 2,24 раза (90% ДИ 1,53—3,28; p=0,0017) и снижение Cl в 0,37 раза (90% ДИ 0,17—0,82; p=0,06) (см. таблицу) по сравнению с исходными значениями. Полученные данные свидетельствуют о накоплении фексофенадина в организме кроликов и замедлении его выведения, что отражает снижение функциональной активности Pgp. Максимальные и клинически значимые различия (90% ДИ отношения средних геометрических фармакокинетических параметров фексофенадина у животных, подвергнутых овариэктомии, к параметрам интактных животных, находящиеся вне диапазона 0,8—1,25) были зарегистрированы на 42-е сутки после операции.
У животных 3-й группы (введение эстрадиола и прогестерона на фоне овариэктомии) на 14-е сутки после овариэктомии Cl фексофенадина снижался в 0,62 раза (90% ДИ 0,45—0,86; p=0,024) по сравнению с исходными значениями. На 28-е сутки (14-е сутки после начала введения эстрадиола) AUC0—t фексофенадина увеличивалась в 1,4 раза (90% ДИ 1,16—1,7; p=0,038), а Cl снижался в 0,5 раза (90% ДИ 0,4—0,64; p=0,042). На 42-е сутки эксперимента (14-е сутки после начала введения эстрадиола и 14-е сутки после начала введения комбинации эстрадиола и прогестерона) отмечалось снижение Cmax в 0,73 раза (90% ДИ 0,56—0,96; p=0,041) и AUC0—t в 0,618 раза (90% ДИ 0,46—0,83; p=0,044).
Обнаруженные изменения фармакокинетики фексофенадина свидетельствуют о его накоплении и замедлении выведения в течение 28 сут исследования, т. е. об ингибировании Pgp. Снижение содержания фексофенадина в организме кроликов при введении комбинации эстрадиола и прогестерона на протяжении 14 сут по сравнению с исходными показателями отражает индукцию белка-транспортера.
При сравнении фармакокинетических показателей фексофенадина у животных 2-й и 3-й групп в течение 28 сут исследования значимых различий выявлено не было. На 42-е сутки Сmax фексофенадина у животных 3-й группы была ниже, чем у кроликов 2-й группы в 0,385 раза (90% ДИ 0,23—0,64; p=0,031), AUC0—t — ниже в 0,30 раза (90% ДИ 0,19—0,49; p=0,016), а Cl — выше в 3,19 раза (90% ДИ 1,49—6,81; p=0,009).
При корреляционном анализе во 2-й группе была выявлена прямая связь между концентрацией прогестерона и общим клиренсом фексофенадина (Rs=0,536; p=0,007), а концентрация эстрадиола не обнаруживала связи ни с одним из изученных фармакокинетических параметров.
В 3-й группе обнаружена обратная зависимость между концентрацией прогестерона и Сmax (Rs= –0,435; p=0,034 и AUC0—1 (Rs=–0,497; p=0,014) фексофенадина и между концентрацией эстрадиола и Cmax фексофенадина (Rs= –0,388; p=0,061). Зависимость между концентрацией прогестерона и Cl фексофенадина (Rs=0,733; p=0,00024) оказалась прямой.
В ходе выполнения исследования не было зафиксировано ни одного летального исхода.
Начиная с 14-х суток после овариэктомии функциональная активность Pgp на уровне целостного организма снижается и достигает минимума на 42-е сутки после операции. Учитывая отсутствие значимых изменений концентрации эстрадиола в первые 28 сут, уменьшение активности белка-транспортера в эти сроки скорее всего связано со снижением уровня прогестерона, что подтверждается корреляцией между концентрацией прогестерона и общим клиренсом фексофенадина. Наибольшее снижение активности Pgp наблюдалось на 42-е сутки исследования, когда снижался уровень и эстрадиола, и прогестерона.
Введение 0,5 мг эстрадиола в течение 14 сут после овариэктомии существенно не влияло на функциональную активность Pgp; она оставалась ниже исходной и статистически не отличалась от таковой у животных 2-й группы. Введение комбинации эстрадиола и прогестерона в течение 14 дней повышало активность Pgp по сравнению не только с показателями 2-й группы, но и с исходными показателями. На наш взгляд, это обусловлено тем, что при введении комбинации гормонов происходят нормализация уровня эстрадиола (она значимо не отличается от нормы) и повышение концентрации прогестерона.
Выявленные изменения активности Pgp согласуются с полученными нами ранее данными о более низкой его активности у кроликов самцов, чем у самок [13]. Видимо, одной из причин половых различий в функциональной активности белка-транспортера является стимулирующее влияние эстрадиола и прогестерона на его функциональную активность.
Влияние эстрадиола и прогестерона на активность Pgp может обусловливать вариабельность фармакокинетики субстратов белка-транспортера у женщин [8]. Однако нами не найдено исследований, в которых изучалась бы связь безопасности и эффективности фармакотерапии субстратами Pgp от фазы менструального цикла.
Функционирование Рgp может меняться в результате непосредственного влияния веществ на его активность, либо за счет модификации экспрессии гена MDR1, кодирующего белок-транспортер [1]. Действие половых гормонов в физиологических (относительно низких) концентрациях на белок-транспортер скорее всего связано с изменением его экспрессии.
В базе данных TRANSFAC обнаружена локализация предполагаемого estrogen response element выше сайта инициации транскрипции [14], но не в промоторе гена MDR1. Однако были выявлены сайты связывания для транскрипционного фактора AP-1, что указывает на возможность опосредованного влияния эстрадиола на экспрессию Pgp. Эстрогены уменьшают экспрессию белка c-Jun, являющегося основным компонентом AP-1. Повышенная экспрессия c-Jun связана с подавлением экспрессии гена MDR1 в различных клеточных линиях человека [16].
На клетках линии Т47D, трансфецированных промотором гена mdr1b, показано, что агонист прогестероновых рецепторов R5020 в физиологической концентрации 5·10–7 М, действуя через прогестероновый рецептор PRA, стимулирует экспрессию гена, кодирующего Pgp в матке мышей [17].
Эстрогены и гестагены в высоких концентрациях (10 мкМ) также способны действовать как типичные ксенобиотики через другие типы ядерных рецепторов, такие как прегнан Х-рецептор (PXR) [18, 19], который повышает экспрессию гена MDR1 [20].
В выполненной работе не изучалась экспрессия Pgp в органах и тканях, что не позволяет однозначно ответить на вопросы: за счет чего изменилось функционирование белка-транспортера (вследствие модуляции экспрессии или собственно активности), а также в каком конкретно органе модуляция активности Pgp (кишечник, почки, печень) привела к изменению фармакокинетики его маркерного субстрата — фексофенадина.
Дальнейшие исследования в данной области позволят установить органоспецифичные молекулярные механизмы изменения функционирования данного белка-транспортера в различные фазы менструального цикла.
Овариэктомия кроликов приводит к снижению функциональной активности Pgp; введение эстрадиола (0,5 мг) после операции в течение 14 сут не влияет на активность белка-транспортера, а последующее применение комбинации эстрадиола (0,5 мг) и прогестерона (5 мг) в течение 14 сут повышает активность Pgp.
Зависимость функционирования белка-транспортера от физиологических колебаний концентраций эстрадиола и прогестерона свидетельствует о том, что эффективность и безопасность фармакотерапии субстратами Pgp в разные фазы менструального цикла может различаться, что требует коррекции доз лекарственных средств в зависимости от фазы цикла.
Источник финансирования. Работа поддержана грантом РФФИ 16−04−00320 а
Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
Сведения об авторах
*Щулькин Алексей Владимирович, к.м.н. [Alexey V. Shchulkin, MD, PhD]; адрес: Россия, 390026, Рязань, ул. Высоковольтная, 9 [address: 9 Vysokovoltnaya street, Ryazan, 390026, Russia]; ORCID: http://orcid.org/0000-0003-1688-0017; eLibrary SPIN: 2754-1702;
e-mail: alekseyshulkin@rambler.ru
Черных Иван Владимирович, к.б.н. [Ivan V. Chernykh, PhD]; ORCID: http://orcid.org/0000-0002-5618-7607; eLibrary SPIN: 5238-6165;
e-mail:ivchernykh88@mail.ru
Мыльников Павел Юрьевич [Pavel Yu. Mylnikov]; ORCID: http://orcid.org/0000-0001-7829-2494; eLibrary SPIN: 8503-3082;
e-mail: dukeviperlr@gmail.com
Уткин Дмитрий Олегович [Dmitry O. Utkin]; ORCID: http://orcid.org/0000-0002-6620-2073; eLibrary SPIN: 2368-7127;
e-mail: riverflow49@gmail.com
Якушева Елена Николаевна, д.м.н., проф. [Elena N. Yakusheva, MD, PhD, professor]; ORCID: http://orcid.org/0000-0001-6887-4888, eLibrary SPIN: 2865-3080; e-mail: e.yakusheva@rzgmu.ru
Подтверждение e-mail
На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.
Подтверждение e-mail
Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.