The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Manturova N.E.

Pirogov Russian National Research Medical University

Stupin V.A.

Pirogov Russian National Research Medical University

Silina E.V.

Sechenov First Moscow State Medical University (Sechenov University)

Cerium oxide nanoparticles for surgery, plastic surgery and aesthetic medicine

Authors:

Manturova N.E., Stupin V.A., Silina E.V.

More about the authors

Journal: Plastic Surgery and Aesthetic Medicine. 2023;(3): 120‑129

Read: 2512 times


To cite this article:

Manturova NE, Stupin VA, Silina EV. Cerium oxide nanoparticles for surgery, plastic surgery and aesthetic medicine. Plastic Surgery and Aesthetic Medicine. 2023;(3):120‑129. (In Russ., In Engl.)
https://doi.org/10.17116/plast.hirurgia2023031120

Recommended articles:
Arti­ficial inte­lligence-based software for digi­tal asse­ssment of repa­rative bone tissue rege­neration. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2025;(1):19-24
Role of post-procedure care in skin reha­bilitation after hardware procedures with skin cove­rage damage. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(2):240-244
The known and new ideas about the mechanism of action and the spectrum of effe­cts of Mexi­dol. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5):22-33
New possibilities for professional skin care after hardware procedures in aesthetic cosmetology. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(3):376-380
Effect of uric acid on the progression of Parkinson’s disease: Myth or reality?. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(7):7-14
The type 1 diabetes mellitus treatment. Russian Journal of Preventive Medi­cine. 2025;(8):131-137

References:

  1. Brozovich A, Andrews E, Tasciotti E, Selber JC. A marriage between plastic surgery and nano-medicine: future directions for restoration in mandibular reconstruction and skin defects. Front Surg. 2020;7:13.  https://doi.org/10.3389/fsurg.2020.00013
  2. Amin K, Moscalu R, Imere A, Murphy R, Barr S, Tan Y, Wong R, Sorooshian P, Zhang F, Stone J, Fildes J, Reid A, Wong J. The future application of nanomedicine and biomimicry in plastic and reconstructive surgery. Nanomedicine. 2019;14:2679-2696. https://doi.org/10.2217/nnm-2019-0119
  3. Chun YW, Webster TJ. The role of nanomedicine in growing tissues. Ann Biomed Eng. 2009;37:2034-2047. https://doi.org/10.1007/s10439-009-9722-1
  4. Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A, Alkhanani MF, Harakeh S, Hussain A, Haque S, Reshi MS. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells. 2022;11(3):552.  https://doi.org/10.3390/cells11030552
  5. Moldogazieva NT, Mokhosoev IM, Mel’nikova TI, Porozov YB, Terentiev AA. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2019;2019:3085756. https://doi.org/10.1155/2019/3085756
  6. Silina EV, Stupin VA, Bolevich SB, Manturova NE. Regularities of free radical processes and involutional changes of face and neck skin in different age groups. Clinical, Cosmetic and Investigational Dermatology. 2018;11:515-520.  https://doi.org/10.2147/CCID.S181093
  7. Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci. 2004; 1012:153-163.  https://doi.org/10.1196/annals.1306.012
  8. Yadav S, Maurya PK. Biomedical applications of metal oxide nanoparticles in aging and age-associated diseases. 3 Biotech. 2021;11(7):338.  https://doi.org/10.1007/s13205-021-02892-8
  9. Xu C, Qu X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014;6(3):e90.  https://doi.org/10.1038/am.2013.88
  10. Dhall A, Self W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants (Basel). 2018; 7(8):97.  https://doi.org/10.3390/antiox7080097
  11. Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT, McGinnis J, Seal S. Nanoceria as Antioxidant: Synthesis and Biomedical Applications. JOM (1989). 2008;60(3):33-37.  https://doi.org/10.1007/s11837-008-0029-8
  12. Estevez AY, Erlichman JS. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine (Lond). 2014;9(10):1437-1440. https://doi.org/10.2217/nnm.14.87
  13. Hirst SM, Karakoti A, Singh S, Self W, Tyler R, Seal S, Reilly CM. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol. 2013;28(2):107-118.  https://doi.org/10.1002/tox.20704
  14. Thakur N, Manna P, Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnology. 2019 10;17(1):84.  https://doi.org/10.1186/s12951-019-0516-9
  15. Fard JK, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull. 2015;5(4):447-454.  https://doi.org/10.15171/apb.2015.061
  16. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials. 2007;28(10):1918-1925. https://doi.org/10.1016/j.biomaterials.2006.11.036
  17. Chen S, Hou Y, Cheng G, Zhang C, Wang S, Zhang J. Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol Trace Elem Res. 2013;154(1):156-166.  https://doi.org/10.1007/s12011-013-9678-8
  18. Ciofani G, Genchi GG, Mazzolai B, Mattoli V. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta Gen Subj. 2014;1840(1):495-506.  https://doi.org/10.1016/j.bbagen.2013.10.009
  19. Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW, Baker CH. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomed Nanotechnol Biol Med. 2010;6(5): 698-705.  https://doi.org/10.1016/j.nano.2010.01.010
  20. Kim SJ, Chung BH. Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydr Polym. 2016;150:400-407.  https://doi.org/10.1016/j.carbpol.2016.05.021
  21. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, Licoccia S, Minieri M, Di Nardo P, Traversa E. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012;6(5): 3767-3775. https://doi.org/10.1021/nn2048069
  22. Perez JM, Asati A, Nath S, Kaittanis C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small. 2008;4(5):552-556.  https://doi.org/10.1002/smll.200700824
  23. Ranjbar A, Soleimani Asl S, Firozian F, Heidary Dartoti H, Seyedabadi S, Taheri Azandariani M, Ganji M. Role of Cerium Oxide Nanoparticles in a Paraquat-Induced Model of Oxidative Stress: Emergence of Neuroprotective Results in the Brain. J Mol Neurosci. 2018;66(3):420-427.  https://doi.org/10.1007/s12031-018-1191-2
  24. Rubio L, Annangi B, Vila L, Hernández A, Marcos R. Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Arch Toxicol. 2016;90(2):269-278.  https://doi.org/10.1007/s00204-015-1468-y
  25. Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, Baker CH. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Biol Med. 2013;9(4):558-569. Epub 2012 Nov 22.  https://doi.org/10.1016/j.nano.2012.10.010
  26. Lu H, Wan L, Li X, Zhang M, Shakoor A, Li W, Zhang X. Combined Synthesis of Cerium Oxide Particles for Effective Anti-Bacterial and Anti-Cancer Nanotherapeutics. Int J Nanomedicine. 2022;17:5733-5746. https://doi.org/10.2147/IJN.S379689
  27. Devi NS, Ganapathy DM, Rajeshkumar S, Maiti S. Characterization and antimicrobial activity of cerium oxide nanoparticles synthesized using neem and ginger. J Adv Pharm Technol Res. 2022;13(Suppl 2):491-495.  https://doi.org/10.4103/japtr.japtr_196_22
  28. Cheng H, Shi Z, Yue K, Huang X, Xu Y, Gao C, Yao Z, Zhang YS, Wang J. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 2021;124:219-232.  https://doi.org/10.1016/j.actbio.2021.02.002
  29. Nadeem M, Khan R, Afridi K, Nadhman A, Ullah S, Faisal S, Mabood ZU, Hano C, Abbasi BH. Green Synthesis of Cerium Oxide Nanoparticles and Their Antimicrobial Applications: A Review. Int J Nanomedicine. 2020; 15:5951-5961. https://doi.org/10.2147/IJN.S255784
  30. Yefimova S, Klochkov V, Kavok N, Tkachenko A, Onishchenko A, Chumachenko T, Dizge N, Özdemir S, Gonca S, Ocakoglu K. Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. J Biomed Mater Res B Appl Biomater. 2023;111(4):872-880.  https://doi.org/10.1002/jbm.b.35197
  31. Barker E, Shepherd J, Asencio IO. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. Molecules. 2022;27(9):2678. https://doi.org/10.3390/molecules27092678
  32. Kannan SK, Sundrarajan M. A Green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int J Nanosci. 2014;13(03):1450018.
  33. Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C. 2015;49:408-415.  https://doi.org/10.1016/j.msec.2015.01.042
  34. Zholobak NM, Ivanov VK, Shcherbakov AB. Interaction of nanoceria with microorganisms. Nanobiomaterials in antimicrobial therapy: applications of nanobiomaterials. New York: Elsevier Inc.; 2016;419-450.  https://doi.org/10.1016/B978-0-323-42864-4.00012-9
  35. Cuahtecontzi-Delint R, Mendez-Rojas MA, Bandala ER, Quiroz MA, Recillas S, Sanchez-Salas JL. Enhanced antibacterial activity of CeO2 nanoparticles by surfactants. Int J Chem React Eng. 2013;11(2):781-785.  https://doi.org/10.1515/ijcre-2012-0055
  36. Kuang Y, He X, Zhang Z, Li Y, Zhang H, Ma Y, Wu Z, Chai Z. Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotechnol. 2011;11(5):4103-4108. https://doi.org/10.1166/jnn.2011.3858
  37. Shah V, Shah S, Shah H, Rispoli FJ, McDonnell KT, Workeneh S, Karakoti A, Kumar A, Seal S. Antibacterial activity of polymer coated cerium oxide nanoparticles. PLoS One. 2012;7(10):e47827. https://doi.org/10.1371/journal.pone.0047827
  38. Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012;6(6):5164-5173. https://doi.org/10.1021/nn300934k
  39. Zhang M, Zhang C, Zhai X, Luo F, Du Y, Yan C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater. 2019;62: 1727-1739. https://doi.org/10.1007/s40843-019-9471-7
  40. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol. 2006;40(19):6151-6156. https://doi.org/10.1021/es060999b
  41. Zeyons O, Thill A, Chauvat F, Menguy N, Cassier-Chauvat C, Oréar C, Daraspe J, Auffan M, Rose J, Spalla O. Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology. 2009;3:284-295.  https://doi.org/10.3109/17435390903305260
  42. Gopinath K, Karthika V, Sundaravadivelan C, Gowri S, Arumugam A. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J Nanostruct Chem. 2015;5:295-303.  https://doi.org/10.1007/s40097-015-0161-2
  43. Mohamed HEA, Afridi S, Khalil AT, Ali M, Zohra T, Akhtar R, Ikram A, Shinwari ZK, Maaza M. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine (Lond). 2020;15(5):467-488.  https://doi.org/10.2217/nnm-2019-0368
  44. Alpaslan E, Geilich BM, Yazici H, Webster TJ. PH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci Rep. 2017;7:1-12.  https://doi.org/10.1038/srep45859
  45. Dar MA, Gul R, Alfadda AA, Karim MR, Kim DW, Cheung CL, Almajid AA, Alharthi NH, Pulakat L. Size-dependent effect of nanoceria on their antibacterial activity towards Escherichia coli. Sci Adv Mater. 2017;9:1248-1253. Https://doi.org/10.1166/sam.2017.3098
  46. Krishnamoorthy K, Veerapandian M, Zhang LH, Yun K, Kim SJ. Surface chemistry of cerium oxide nanocubes: toxicity against pathogenic bacteria and their mechanistic study. J Ind Eng Chem. 2014;20(5):3513-3517. https://doi.org/10.1016/j.jiec.2013.12.043
  47. Xu Y, Wang C, Hou J, Wang P, You G, Miao L. Effects of cerium oxide nanoparticles on bacterial growth and behaviors: induction of biofilm formation and stress response. Environ Sci Pollut Res Int. 2019;26(9):9293-9304. https://doi.org/10.1007/s11356-019-04340-w
  48. Kunga Sugumaran V, Gopinath K, Palani N, Arumugam A, Jose S, Bahadur A, Rajangam I. Plant pathogenic fungus F. solani mediated biosynthesis of Nanoceria: Antibacterial and antibiofilm activity. RSC Adv. 2016;6:42720-42729. https://doi.org/10.1039/C6RA05003D
  49. Bakun P, Czarczynska-Goslinska B, Mlynarczyk DT, Musielak M, Mylkie K, Dlugaszewska J, Koczorowski T, Suchorska WM, Ziegler-Borowska M, Goslinski T, Krakowiak R. Gallic Acid-Functionalized, TiO2-Based Nanomaterial-Preparation, Physicochemical and Biological Properties. Materials (Basel). 2022;15(12):4177. https://doi.org/10.3390/ma15124177
  50. Shi LL, Liu MZ, Jiang ZY, Yu XT, Li JQ, Guo GH. [Research advances on pharmacological interventions for hypertrophic scar]. Zhonghua Shao Shang Za Zhi. 2022;38(12):1179-1184. (In Chinese). https://doi.org/10.3760/cma.j.cn501120-20211118-00388
  51. Li M, Hu M, Zeng H, Yang B, Zhang Y, Li Z, Lu L, Ming Y. Multifunctional Zinc Oxide/Silver Bimetallic Nanomaterial-Loaded Nanofibers for Enhanced Tissue Regeneration and Wound Healing. J Biomed Nanotechnol. 2021;17(9):1840-1849. https://doi.org/10.1166/jbn.2021.3152
  52. Tan A, Chawla R, G N, Mahdibeiraghdar S, Jeyaraj R, Rajadas J, Hamblin MR, Seifalian AM. Nanotechnology and regenerative therapeutics in plastic surgery: the next frontier. J Plast Reconstr Aesthet Surg. 2016;69(1):1-13.  https://doi.org/10.1016/j.bjps.2015.08.028
  53. Anggelia MR, Huang R-W, Cheng H-Y, Lin C-H, Lin C-H. Implantable immunosuppressant delivery to prevent rejection in transplantation. Int J Mol Sci. 2022;23(3):1592. https://doi.org/10.3390/ijms23031592
  54. Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnol. 2022;20(1):141.  https://doi.org/10.1186/s12951-022-01342-8
  55. Heunis TDJ, Dicks LMT. Nanofibers offer alternative ways to the treatment of skin infections. J Biomed Biotechnol. 2010;2010:1-10.  https://doi.org/10.1155/2010/510682
  56. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33-64.  https://doi.org/10.1016/j.addr.2017.08.001
  57. Silina EV, Manturova NE, Vasin VI, Artyushkova EB, Khokhlov NV, Ivanov AV, Stupin VA. Efficacy of A Novel Smart Polymeric Nanodrug in the Treatment of Experimental Wounds in Rats. Polymers (Basel). 2020;12(5):1126. https://doi.org/10.3390/polym12051126
  58. Silina EV, Stupin VA, Suzdaltseva YG, Aliev SR, Abramov IS, Khokhlov NV. Application of Polymer Drugs with Cerium Dioxide Nanomolecules and Mesenchymal Stem Cells for the Treatment of Skin Wounds in Aged Rats. Polymers (Basel). 2021;13(9):1467. https://doi.org/10.3390/polym13091467
  59. You J-O, Rafat M, Almeda D, Maldonado N, Guo P, Nabzdyk CS, Chun M, LoGerfo FW, Hutchinson JW, Pradhan-Nabzdyk LK, Auguste DT. pH-responsive scaffolds generate a pro-healing response. Biomaterials. 2015; 57:22-32.  https://doi.org/10.1016/j.biomaterials.2015.04.011
  60. Osumi K, Matsuda S, Fujimura N, Matsubara K, Kitago M, Itano O, Ogino C, Shimizu N, Obara H, Kitagawa Y. Acceleration of wound healing by ultrasound activation of TiO2 in Escherichia coli-infected wounds in mice. J Biomed Mater Res B Appl Biomater. 2017;105(8):2344-2351. Epub 2016 Aug 10. PMID: 27507677. https://doi.org/10.1002/jbm.b.33774
  61. Tan A, Farhatnia Y, Seifalian AM. Polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU): applications in nanotechnology and regenerative medicine. Crit Rev Biomed Eng. 2013;41:495-513. PMID: 24940662.
  62. Ainslie KM, Bachelder EM, Borkar S, Zahr AS, Sen A, Badding JV, Pishko MV. Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE). Langmuir. 2007;23(2):747-754.  https://doi.org/10.1021/la060948s
  63. Schmidt M, Holzbauer M, Kwasny O, Huemer GM, Froschauer S. 3D Printing for scaphoid-reconstruction with medial femoral condyle flap. Injury. 2020;51:2900-2903. https://doi.org/10.1016/j.injury.2020.02.102
  64. Suchyta M, Mardini S. Innovations and future directions in head and neck microsurgical reconstruction. Clin Plast Surg. 2020;47:573-593.  https://doi.org/10.1016/j.cps.2020.06.009
  65. Costello JP, Olivieri LJ, Su L, Krieger A, Alfares F, Thabit O, Marshall MB, Yoo SJ, Kim PC, Jonas RA, Nath DS. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians: 3D printing/simulation-based CHD education. Congenit Heart Dis. 2015;10(2):185-190.  https://doi.org/10.1111/chd.12238
  66. Chung E, Rybalko VY, Hsieh PL, Leal SL, Samano MA, Willauer AN, Stowers RS, Natesan S, Zamora DO, Christy RJ, Suggs LJ. Fibrin-based stem cell containing scaffold improves the dynamics of burn wound healing. Wound Repair Regen. 2016;24(5):810-819.  https://doi.org/10.1111/wrr.12459
  67. Burmeister DM, Stone R, Wrice NL, Becerra SC, Natesan S, Christy RJ. Fibrin hydrogels prevent contraction and deliver adipose stem cells to debrided deep partial thickness burns for accelerated angiogenesis. FASEB J. 2016;30:1300-1307. https://doi.org/10.1096/fasebj.30.1_supplement.1300.7
  68. Jain K, Shukla R, Yadav A, Ujjwal RR, Flora SJS. 3D Printing in Development of Nanomedicines. Nanomaterials (Basel). 2021;11(2):420.  https://doi.org/10.3390/nano11020420
  69. El-Say KM, Felimban RI, Tayeb HH, Chaudhary AG, Omar AM, Rizg WY, Alnadwi FH, Abd-Allah FI, Ahmed TA. Pairing 3D-Printing with Nanotechnology to Manage Metabolic Syndrome. Int J Nanomedicine. 2022; 17:1783-1801. https://doi.org/10.2147/IJN.S357356
  70. Mallakpour S, Tabesh F, Hussain CM. 3D and 4D printing: From innovation to evolution. Adv Colloid Interface Sci. 2021;294:102482. https://doi.org/10.1016/j.cis.2021.102482
  71. Sotsuka Y, Matsuda K, Fujita K, Fujiwara T, Kakibuchi M. A perforator model as an aid to elevate deep inferior epigastric perforator flap. Plast Reconstr Surg Glob Open. 2015;3:e462. https://doi.org/10.1097/GOX.0000000000000441
  72. Mehta S, Byrne N, Karunanithy N, Farhadi J. 3D printing provides unrivalled bespoke teaching tools for autologous free flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2016;69:578-580.  https://doi.org/10.1016/j.bjps.2015.12.026
  73. Jablonka EM, Wu RT, Mittermiller PA, Gifford K, Momeni A. 3-DIEPrinting: 3D-printed models to assist the intramuscular dissection in abdominally based microsurgical breast reconstruction. Plast Reconstr Surg Glob Open. 2019;7:e2222. https://doi.org/10.1097/GOX.0000000000002222
  74. Ogunleye AA, Deptula PL, Inchauste SM, Zelones JT, Walters S, Gifford K, LeCastillo C, Napel S, Fleischmann D, Nguyen DH.The utility of three-dimensional models in complex microsurgical reconstruction. Arch Plast Surg. 2020;47(5):428-434.  https://doi.org/10.5999/aps.2020.00829
  75. Huang Y, Du Z, Zheng T, Jing W, Liu H, Liu X, Mao J, Zhang X, Cai Q, Chen D, Yang X. Antibacterial, conductive, and osteocompatible polyorganophosphazene microscaffolds for the repair of infectious calvarial defect. J Biomed Mater Res. 2021;109:2580-2596. https://doi.org/10.1002/jbm.a.37252
  76. Botting J. The History of Thalidomide. Drug News Perspect. 2002;15(9):604-611. PMID: 12677202. https://doi.org/10.1358/dnp.2002.15.9.840066
  77. Franks ME, Macpherson GR, Figg WD. Thalidomide. Lancet. 2004; 363(9423):1802-1811. https://doi.org/10.1016/S0140-6736(04)16308-3
  78. Vargesson N, Stephens T. Thalidomide: history, withdrawal, renaissance, and safety concerns. Expert Opin Drug Saf. 2021;20(12):1455-1457. https://doi.org/10.1080/14740338.2021.1991307

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.