The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Zakondyrin D.E.

Dydykin S.S.

Vasiliev Yu.L.

Trunin E.M.

I.I. Mechnikov North-Western State Medical University

Tatarkin V.V.

I.I. Mechnikov North-Western State Medical University

Laptina V.I.

Mellin R.V.

G.Ya. Remishevskaya Republican Clinical Hospital

Tambovthev S.A.

National Research Mordovia State University

Gavrilov A.V.

Lomonosov Moscow State University

Dolotova D.D.

Gammamed-Soft, Ltd

Sarmadian R.

Dubkov V.D.

Novichkova D.A.

Mechnikov North-Western State Medical University

Stecik E.O.

Mechnikov North-Western State Medical University

Anatomical and surgical research in neurosurgery. Traditions and trends

Authors:

Zakondyrin D.E., Dydykin S.S., Vasiliev Yu.L., Trunin E.M., Tatarkin V.V., Laptina V.I., Mellin R.V., Tambovthev S.A., Gavrilov A.V., Dolotova D.D., Sarmadian R., Dubkov V.D., Novichkova D.A., Stecik E.O.

More about the authors

Read: 903 times


To cite this article:

Zakondyrin DE, Dydykin SS, Vasiliev YuL, et al. . Anatomical and surgical research in neurosurgery. Traditions and trends. Russian Journal of Operative Surgery and Clinical Anatomy. 2025;9(1):56‑65. (In Russ.)
https://doi.org/10.17116/operhirurg2025901156

Recommended articles:

References:

  1. Nikityuk D.B., Dydykin S.S., Kagan I.I., Zadnipryany I.V., Vasil’ev Yu.L., Kapitonova M.Yu. About the first edition of the International Neuronatomical Terminology (TNA) and its Russian equivalent. Russian Journal of Operative Surgery and Clinical Anatomy. 2024; 8(2):42-50. (In Russ.). https://doi.org/10.17116/operhirurg2024802142
  2. Zakondyrin, D.E., Semenov, G.M. Anatomical Features of Transcranial Access to the Orbital Cavity. Neurosci Behav Physi. 2011; 41: 759-762.  https://doi.org/10.1007/s11055-011-9483-9
  3. Belov I.Yu., Gulyaev D.A., Primak N.A., Chebotarev S.Ya., Gorban’ V.V. Anatomical-topographic comparison of surgical approaches to pterygopalatine fossa and infratemporal fossa. Russian journal of neurosurgery. 2014;(4):32-37. (In Russ.)
  4. Agosti E, De Maria L, Mattogno PP, Della Pepa GM, D’Onofrio GF, Fiorindi A, Lauretti L, Olivi A, Fontanella MM, Doglietto F. Quantitative anatomical studies in neurosurgery: a systematic and critical review of research methods. Life. 2023;13:1822. https://doi.org/10.3390/life13091822
  5. Wu H, Maimaiti A, Xie Q, Aili Y, Muertizha M, Zhu G, Mijiti M, Li Y, Wang Y. Quantitative anatomical study of the supratentorial and infratentorial «endoscopic keyhole» approach to the peripineal region. Int J Clin Pract. 2024;6851468. https://doi.org/10.1155/2024/6851468
  6. Abramov I, Labib MA, Houlihan LM, Loymak T, Srinivasan VM, Preul MC, Lawton MT. Quantitative anatomic comparison of the extreme lateral transodontoid vs extreme medial endoscopic endonasal approaches to the jugular foramen and craniovertebral junction. Oper Neurosurg (Hagerstown). 2022;23(5):396-405.  https://doi.org/10.1227/ons.0000000000000350
  7. Salma A, Alkandari A, Sammet S, Amiratti M. Lateral supraorbital approach vs pterional approach: an anatomic qualitative and quantitative evaluation. Neurosurgery. 2011;68(2):364-372.  https://doi.org/10.1227/NEU.0b013e318211721f
  8. Kodera T, Akazawa A, Yamada S, Arai H, Yamauchi T, Higashino Y, Arishima H, Iino S, Noriki S, Kikuta KI. Quantitative analysis of the far-lateral, supra-articular transcondylar transtubercular approach using cadaveric computed tomography and magnetic resonance imaging. Operative Neurosurg. 2020;19(5):E498-E509. https://doi.org/10.1093/ons/opaa035
  9. Topczewski TE, Di Somma A, Pineda J, Ferres A, Torales J, Reyes L, Morillas R, Solari D, Cavallo LM, Cappabianca P, Enseñat J, Prats-Galino A. Endoscopic endonasal and transorbital routes to the petrous apex: anatomic comparative study of two pathways. Acta Neurochir (Wien). 2020;162(9):2097-2109. https://doi.org/10.1007/s00701-020-04451-1
  10. Kalandari AA, Levchenko OV, Zakondyrin DE, Kutrovskaya NYu. Anatomical study of the possibilities of endoscopic transnasal and endoscopic transorbital medial orbitotomy and decompression of the optic nerve. Neyrokhirurgiya = Russian Journal of Neurosurgery. 2019;21(3): 44-49 (In Russ). https://doi.org/10.17650/1683-3295-2019-21-3-52-57
  11. Melchenko AA, Cherekaev VA, Sufianov AA, Nikolenko VN, Golodnev GE, Shumeiko TS, Gizatullin MR, Golbin DA, Lasunin NV, Shelyagin IS, Surikov AA, Senko IV. Topographic anatomy of two-piece orbitozygomatic, modified orbitozygomatic and transzygomatic approaches: A comparative analysis of neurosurgical options. Science and innovations in medicine. 2023;8(1):4-12. (In Russ.). https://doi.org/10.35693/2500-1388-2023-8-1-4-12
  12. Evins AI, Sistiaga IL, Quispe-Flores AH, Castro MM, Atchley TJ, Pérez-Fernández S, Pomposo I, Stieg PE, Bernardo A. Quantitative comparative surgical analysis of the endoscopic transorbital approach and frontotemporal-orbitozygomatic approach for extradural exposure of the cavernous sinus. Neurosurg Focus. 2024;56(4):E4.  https://doi.org/10.3171/2024.1.FOCUS23860
  13. Zanin L, Agosti E, Ebner F, de Maria L, Belotti F, Buffoli B, Rezzani R, Hirt B, Ravanelli M, Ius T, Zeppieri M, Tatagiba MS, Fontanella MM, Doglietto F. Quantitative anatomical comparison of surgical approaches to Meckel’s cave. J Clin Med. 2023;12(21):6847. https://doi.org/10.3390/jcm12216847
  14. Saraceno G, Agosti E, Qiu J, Buffoli B, Ferrari M, Raffetti E, Belotti F, Ravanelli M, Mattavelli D, Schreiber A, Hirtler L, Rodella LF, Maroldi R, Nicolai P, Gentili F, Kucharczyk W, Fontanella MM, Doglietto F. Quantitative anatomical comparison of anterior, anterolateral and lateral, microsurgical and endoscopic approaches to the middle cranial fossa. World Neurosurg. 2020;134:e682-e730. https://doi.org/10.1016/j.wneu.2019.10.178.
  15. García-Pérez D, Abarca J, González-López P, Nieto J, Lagares A, Paredes I. A Frontal Route to Middle and Posterior Cranial Fossa: Quantitative study for the lateral transorbital endoscopic approach and comparison with the subtemporal approach. World Neurosurg. 2022;167: e236-e250. https://doi.org/10.1016/j.wneu.2022.07.129
  16. Fava A, di Russo P, Passeri T, Camara B, Paglia F, Matano F, Okano A, Giammattei L, Froelich S. The mini-combined transpetrosal approach: an anatomical study and comparison with the combined transpetrosal approach. Acta Neurochir (Wien). 2022;164(4):1079-1093. https://doi.org/10.1007/s00701-022-05124-x
  17. Agosti E, Turri-Zanoni M, Saraceno G, Belotti F, Karligkiotis A, Rocca G, Buffoli B, Raffetti E, Hirtler L, Rezzani R, Rodella LF, Ferrari M, Nicolai P, Bresson D, Herman P, Dallan I, Castelnuovo P, Locatelli D, Fontanella MM, Doglietto F. Quantitative anatomic comparison of microsurgical transcranial, endoscopic endonasal, and transorbital approaches to the spheno-orbital region. Oper Neurosurg (Hagerstown). 2021;21(6):E494-E505. https://doi.org/10.1093/ons/opab310
  18. Serioli S, Agosti E, Buffoli B, Raffetti E, Alexander AY, Salgado-López L, Hirtler L, Rezzani R, Maroldi R, Draghi R, Borghesi I, Calbucci F, Peris-Celda M, Fontanella MM, Doglietto F. Microsurgical transcranial approaches to the posterior surface of petrosal portion of the temporal bone: quantitative analysis of surgical volumes and exposed areas. Neurosurg Rev. 2023;46(1):48.  https://doi.org/10.1007/s10143-023-01956-y
  19. Santos C, Guizzardi G, Di Somma A, Lopez P, Mato D, Enseñat J, Prats-Galino A. Comparison of accessibility to cavernous sinus areas throughout endonasal, transorbital, and transcranial approaches: anatomic study with quantitative analysis. Oper Neurosurg (Hagerstown). 2023;24(4):e271-e280. https://doi.org/10.1227/ons.0000000000000547
  20. Sun Q, Zhao X, Gandhi S, Tayebi Meybodi A, Belykh E, Valli D, Cavallo C, Borba Moreira L, Nakaji P, Lawton MT, Preul MC. Quantitative analysis of ipsilateral and contralateral supracerebellar infratentorial and occipital transtentorial approaches to the cisternal pulvinar: laboratory anatomical investigation. J Neurosurg. 2019; 133(4): 1172-1181. https://doi.org/10.3171/2019.4.JNS19351
  21. Houlihan LM, Naughton D, Preul MC. Volume of surgical freedom: The most applicable anatomical measurement for surgical assessment and 3-dimensional modeling. Front Bioengineer Biotechnol. 2021;9;62879.
  22. Otero-Fernández P, Abarca-Olivas J, González-López P, Martorell-Llobregat C, Flores-Justa A, Villena-Martín M, Nieto-Navarro J. Endoscopic approaches to the posterior wall of the third ventricle: An anatomical comparison. Clin Neurol Neurosurg. 2024;245:108511. https://doi.org/10.1016/j.clineuro.2024.108511
  23. Lan Q, Sughrue M, Hopf NJ, Mori K, Park J, Andrade-Barazarte H, Balamurugan M, Cenzato M, Broggi G, Kang D, Kikuta K, Zhao Y, Zhang H, Irie S, Li Y, Liew BS, Kato Y. International expert consensus statement about methods and indications for keyhole microneurosurgery from International Society on Minimally Invasive Neurosurgery. Neurosurg Rev. 2021;44(1):1-17.  https://doi.org/10.1007/s10143-019-01188-z
  24. Arnaout MM, Luzzi S, Galzio R, Aziz K. Supraorbital keyhole approach: pure endoscopic and endoscope-assisted perspective. Clin Neurol Neurosurg. 2020;189:105623. https://doi.org/10.1016/j.clineuro.2019.105623
  25. Rampinelli V, Agosti E, Saraceno G, Ferrari M, Taboni S, Mattavelli D, Schreiber A, Tomasoni M, Gualtieri T, Ravanelli M, Buffoli B, Rezzani R, Fontanella MM, Nicolai P, Piazza C, Deganello A, Doglietto F. Endoscopic subtemporal epidural key-hole approach: quantitative anatomic analysis of three surgical corridors. World Neurosurg. 2021;152: e128-e137. https://doi.org/10.1016/j.wneu.2021.05.055
  26. Wu H, Maimaiti A, Xie Q, Aili Y, Muertizha M, Zhu G, Mijiti M, Li Y, Wang Y. Quantitative anatomical study of the supratentorial and infratentorial “endoscopic keyhole” approach to the peripineal region. Int J Clin Pract. 2024;6851468. https://doi.org/10.1155/2024/6851468
  27. Revuelta Barbero JM, Porto E, Prevedello DM, Noiphithak R, Yanez-Siller JC, Martinez-Perez R, Pradilla G. Quantitative comparative analysis of the endoscope-assisted expanded retrosigmoid approach and the far-lateral approach to the inframeatal area: an anatomic study with surgical implications. Oper Neurosurg (Hagerstown). 2023;24(3):e187-e200. https://doi.org/10.1227/ons.0000000000000506
  28. Lin BJ, Ju DT, Hsu TH, Chen YA, Chung TT, Liu WH, Hueng DY, Chen YH, Hsia CC, Ma HI, Liu MY, Tang CT. Quantitative comparison of endoscopically assisted endonasal, sublabial and transorbital transmaxillary approaches to the anterolateral skull base. Clin Otolaryngol. 202;46(1):123-130.  https://doi.org/10.1111/coa.13559
  29. Agosti E, Saraceno G, Rampinelli V, Raffetti E, Veiceschi P, Buffoli B, Rezzani R, Giorgianni A, Hirtler L, Alexander AY, Deganello A, Piazza C, Nicolai P, Castelnuovo P, Locatelli D, Peris-Celda M, Fontanella MM, Doglietto F. Quantitative anatomic comparison of endoscopic transnasal and microsurgical transcranial approaches to the anterior cranial fossa. Oper Neurosurg (Hagerstown). 2022;23(4):e256-e266. https://doi.org/10.1227/ons.0000000000000312
  30. Zoia C, Mantovani G, Müther M, Suero Molina E, Scerrati A, De Bonis P, Cornelius JF, Roche PH, Tatagiba M, Jouanneau E, Manet R, Schroeder HWS, Cavallo LM, Kasper EM, Meling TR, Mazzatenta D, Daniel RT, Messerer M, Visocchi M, Froelich S, Bruneau M, Spena G. Through the orbit and beyond: current state and future perspectives in endoscopic orbital surgery on behalf of the EANS frontiers committee in orbital tumors and the EANS skull base section. Brain Spine. 2023; 3:102669. https://doi.org/10.1016/j.bas.2023.102669
  31. de Notaris M, Sacco M, Corrivetti F, Grasso M, Corvino S, Piazza A, Kong DS, Iaconetta G. The transorbital approach, a game-changer in neurosurgery: a guide to safe and reliable surgery based on anatomical principles. J Clin Med. 2023;12(20):6484. https://doi.org/10.3390/jcm12206484
  32. Corvino S, Kassam A, Piazza A, Corrivetti F, Spiriev T, Colamaria A, Cirrottola G, Cavaliere C, Esposito F, Cavallo LM, Iaconetta G, de Notaris M. Open-door extended endoscopic transorbital technique to the paramedian anterior and middle cranial fossae: technical notes, anatomomorphometric quantitative analysis, and illustrative case. Neurosurg Focus. 2024;56(4):E7.  https://doi.org/10.3171/2024.1.FOCUS23838
  33. Komaitis S, Skandalakis GP, Drosos E, Neromyliotis E, Charalampopoulou E, Anastasopoulos L, Zenonos G, Stranjalis G, Kalyvas A, Koutsarnakis C. The lateral retrocanthal transorbital endoscopic approach to the middle fossa: cadaveric stepwise approach and review of quantitative cadaveric data. Neurosurg Focus. 2024;56(4):E6.  https://doi.org/10.3171/2024.1.FOCUS23839
  34. Di Somma A, Andaluz N, Cavallo LM, Topczewski TE, Frio F, Gerardi RM, Pineda J, Solari D, Enseñat J, Prats-Galino A, Cappabianca P. Endoscopic transorbital route to the petrous apex: a feasibility anatomic study. Acta Neurochir (Wien). 2018;160(4):707-720.  https://doi.org/10.1007/s00701-017-3448-x
  35. Park HH, Roh TH, Choi S, Yoo J, Kim WH, Jung IH, Yun IS, Hong CK. Endoscopic transorbital approach to mesial temporal lobe for intra-axial lesions: cadaveric study and case series (SevEN-008). Oper Neurosurg (Hagerstown). 2021;21(6):E506-E515. https://doi.org/10.1093/ons/opab319
  36. De Rosa A, Mosteiro A, Guizzardi G, Roldán P, Torales J, Matas Fassi J, Cavallo LM, Solari D, Prats-Galino A, Di Somma A, Enseñat J. Endoscopic transorbital resection of the temporal lobe: anatomic qualitative and quantitative study. Front Neuroanat. 2023;17:1282226. https://doi.org/10.3389/fnana.2023.1282226
  37. Kim EH, Yoo J, Jung IH, Oh JW, Kim JS, Yoon JS, Moon JH, Kang SG, Chang JH, Roh TH. Endoscopic transorbital approach to the insular region: cadaveric feasibility study and clinical application (SevEN-005). J Neurosurg. 2021;135(4):1164-1172. https://doi.org/10.3171/2020.8.JNS202255
  38. Di Somma A, Kong DS, de Notaris M, Moe KS, Sánchez España JC, Schwartz TH, Enseñat J. Endoscopic transorbital surgery levels of difficulty. J Neurosurg. 2022;137(4):1187-1190. https://doi.org/10.3171/2022.3.JNS212699
  39. Evins AI, Sistiaga IL, Quispe-Flores AH, Castro MM, Atchley TJ, Pérez-Fernández S, Pomposo I, Stieg PE, Bernardo A. A quantitative comparative surgical analysis of the endoscopic transorbital approach and frontotemporal-orbitozygomatic approach for extradural exposure of the cavernous sinus. Neurosurg Focus. 2024;56(4):E4.  https://doi.org/10.3171/2024.1.FOCUS23860
  40. Noiphithak R, Yanez-Siller JC, Revuelta Barbero JM, Cho RI, Otto BA, Carrau RL, Prevedello DM. Comparative analysis of the exposure and surgical freedom of the endoscopic extended minipterional craniotomy and the transorbital endoscopic approach to the anterior and middle cranial fossae. Oper Neurosurg (Hagerstown). 2019;17(2):174-181.  https://doi.org/10.1093/ons/opy309
  41. Zoia C, Mastantuoni C, Solari D, de Notaris M, Corrivetti F, Spena G, Cavallo LM. Transorbital and supraorbital uniportal multicorridor approach to the orbit, anterior, middle and posterior cranial fossa: Anatomic study. Brain Spine. 2023;4:102719. https://doi.org/10.1016/j.bas.2023.102719
  42. Houlihan LM, Loymak T, Abramov I, Jubran JH, Staudinger Knoll AJ, Howshar JT, O’Sullivan MGJ, Lawton MT, Preul MC. The biportal transorbital approach: quantitative comparison of the anterior subfrontal craniotomy, bilateral transorbital endoscopic, and microscopic approaches. J. Neurosurg. 2023;30;140(1):59-68.  https://doi.org/10.3171/2023.4.JNS221866
  43. Topczewski TE, Di Somma A, Pineda J, Ferres A, Torales J, Reyes L, Morillas R, Solari D, Cavallo LM, Cappabianca P, Enseñat J, Prats-Galino A. Endoscopic endonasal and transorbital routes to the petrous apex: anatomic comparative study of two pathways. Acta Neurochir (Wien). 2020;162(9):2097-2109. https://doi.org/10.1007/s00701-020-04451-1
  44. Wang Q, Xu X, Ouyang S, Chen J, Song Z, Lou J, Jiang S, Shi W. Exposure of the cavernous sinus via the endoscopic transorbital and endoscopic endonasal approaches: a comparative study. World Neurosurg. 2024;181:e1047-e1058. https://doi.org/10.1016/j.wneu.2023.11.034
  45. Agosti E, Turri-Zanoni M, Saraceno G, Belotti F, Karligkiotis A, Rocca G, Buffoli B, Raffetti E, Hirtler L, Rezzani R, Rodella LF, Ferrari M, Nicolai P, Bresson D, Herman P, Dallan I, Castelnuovo P, Locatelli D, Fontanella MM, Doglietto F. Quantitative anatomic comparison of microsurgical transcranial, endoscopic endonasal, and transorbital approaches to the spheno-orbital region. Oper Neurosurg (Hagerstown). 2021;21(6):E494-E505. https://doi.org/10.1093/ons/opab310
  46. Guizzardi G, Prats-Galino A, Mosteiro A, Santos C, Topczewski T, Torales J, Roldan P, Reyes L, Di Somma A, Enseñat J. Multiportal combined endoscopic endonasal and transorbital pathways: qualitative and quantitative anatomic studies of the “connection” skull base areas. Oper Neurosurg (Hagerstown). 2023;24(5):e342-e350. https://doi.org/10.1227/ons.0000000000000577
  47. Konovalov A.N., Pilipenko Yu.V., Okishev D.N., Artemiev A.A., Mamedbekova G.Sh., Ivanov V.M., Smirnov A.Yu., Strelkov S.V., Blinova E.V., Eliava Sh.Sh. Augmented reality as a method of neuronavigation for extra-intracranial microanastomosis. Russian Journal of Operative Surgery and Clinical Anatomy (Pirogov scientific journal). 2024; 8(3):28-34. (In Russ.). https://doi.org/10.17116/operhirurg2024803128
  48. Shell K, Holt E, Kington A, Mohammed K, Black A, Troup C, Ingiaimo M, Scoles K, Nathaniel TI. Motivation to learn neuroanatomy by cadaveric dissection is correlated with academic performance. Clin Anat. 2020;33(1):128-135.  https://doi.org/10.1002/ca.23500
  49. Fava A, Gorgoglione N, De Angelis M, Esposito V, di Russo P. Key role of microsurgical dissections on cadaveric specimens in neurosurgical training: Setting up a new research anatomical laboratory and defining neuroanatomical milestones. Front Surg. 2023;10:1145881. https://doi.org/10.3389/fsurg.2023.1145881
  50. Ahumada-Vizcaino JC, Wuo-Silva R, Hernández MM, Chaddad-Neto F. The art of combining neuroanatomy and microsurgical skills in modern neurosurgery. Front Neurol. 2023;13:1076778. https://doi.org/10.3389/fneur.2022.1076778
  51. La Rocca G, Mazzucchi E, Pignotti F, Galieri G, Rinaldi P, Sabatino G. Advanced dissection lab for neuroanatomy training. Front Neuroanat. 2022;15:7 78122. https://doi.org/10.3389/fnana.2021.778122
  52. Erol G, Güngör A, Sevgi UT, Gülsuna B, Doğruel Y, Emmez H, Türe U. Creation of a microsurgical neuroanatomy laboratory and virtual operating room: a preliminary study. Neurosurg Focus. 2024; 56(1):E6.  https://doi.org/10.3171/2023.10.FOCUS23638

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.