The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Sultanbaev A.V.

Republican Clinical Oncologic Dispensary

Tuzankina I.A.

Institute of Immunology and Physiology;
Regional Children Hospital

Musin Sh.I.

Republican Clinical Oncologic Dispensary

Kolyadina I.V.

Russian Medical Academy of Continuous Professional Education

Menshikov K.V.

Republican Clinical Oncologic Dispensary;
Bashkir State Medical University

Sultanbaev M.V.

Bashkir State Medical University

Gilyazova I.R.

Bashkir State Medical University;
Institute of Biochemistry and Genetics

Kudlay D.A.

I.M. Sechenov First Moscow State Medical University (Sechenov University);
Institute of Immunology

Specific antitumour immunity and mechanisms of tumour escape from immunological surveillance

Authors:

Sultanbaev A.V., Tuzankina I.A., Musin Sh.I., Kolyadina I.V., Menshikov K.V., Sultanbaev M.V., Gilyazova I.R., Kudlay D.A.

More about the authors

Journal: P.A. Herzen Journal of Oncology. 2024;13(6): 70‑77

Read: 1424 times


To cite this article:

Sultanbaev AV, Tuzankina IA, Musin ShI, et al. . Specific antitumour immunity and mechanisms of tumour escape from immunological surveillance. P.A. Herzen Journal of Oncology. 2024;13(6):70‑77. (In Russ.)
https://doi.org/10.17116/onkolog20241306170

Recommended articles:

References:

  1. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223-249.  https://doi.org/10.1146/annurev-pathol-042020-042741
  2. Nayak L, Iwamoto FM, LaCasce A, Mukundan S, Roemer MGM, Chapuy B, Armand P, Rodig SJ, Shipp MA. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood. 2017;129(23):3071-3073. https://doi.org/10.1182/blood-2017-01-764209
  3. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509-2520. https://doi.org/10.1056/NEJMoa1500596
  4. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350-1355. https://doi.org/10.1126/science.aar4060
  5. Hirschhorn D, Budhu S, Kraehenbuehl L, Gigoux M, Schröder D, Chow A, Ricca JM, Gasmi B, De Henau O, Mangarin LMB, et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell. 2023;186(7):1432-1447.e17.  https://doi.org/10.1016/j.cell.2023.03.007
  6. Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, Rugo HS, Cohen RB, O’Neil BH, Mehnert JM, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 2019;37(4):318-327.  https://doi.org/10.1200/JCO.2018.78.2276
  7. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al.; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018-2028. https://doi.org/10.1056/NEJMoa1501824
  8. Zhang C, Wang L, Xu C, Xu H, Wu Y. Resistance mechanisms of immune checkpoint inhibition in lymphoma: Focusing on the tumor microenvironment. Front Pharmacol. 2023;14:1079924. https://doi.org/10.3389/fphar.2023.1079924
  9. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568-571.  https://doi.org/10.1038/nature13954
  10. Wang X, Qiao Z, Aramini B, Lin D, Li X, Fan J. Potential biomarkers for immunotherapy in non-small-cell lung cancer. Cancer Metastasis Rev. 2023;42(3):661-675.  https://doi.org/10.1007/s10555-022-10074-y
  11. Pabst L, Lopes S, Bertrand B, Creusot Q, Kotovskaya M, Pencreach E, Beau-Faller M, Mascaux C. Prognostic and predictive biomarkers in the era of immunotherapy for lung cancer. Int J Mol Sci. 2023;24(8):7577. https://doi.org/10.3390/ijms24087577
  12. Gjoerup O, Brown CA, Ross JS, Huang RSP, Schrock A, Creeden J, Fabrizio D, Tolba K. Identification and utilization of biomarkers to predict response to immune checkpoint inhibitors. AAPS J. 2020;22(6):132.  https://doi.org/10.1208/s12248-020-00514-4
  13. Huang RSP, Haberberger J, Severson E, Duncan DL, Hemmerich A, Edgerly C, Ferguson NL, Williams E, Elvin J, Vergilio JA, et al. A pan-cancer analysis of PD-L1 immunohistochemistry and gene amplification, tumor mutation burden and microsatellite instability in 48,782 cases. Mod Pathol. 2021;34(2):252-263.  https://doi.org/10.1038/s41379-020-00664-y
  14. Sivapiragasam A, Ashok Kumar P, Sokol ES, Albacker LA, Killian JK, Ramkissoon SH, Huang RSP, Severson EA, Brown CA, Danziger N, et al. Predictive biomarkers for immune checkpoint inhibitors in metastatic breast cancer. Cancer Med. 2021;10(1):53-61.  https://doi.org/10.1002/cam4.3550
  15. Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard JY, Andre F, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30(8):1232-1243. https://doi.org/10.1093/annonc/mdz116
  16. Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, Hodi FS, Joshua AM, Kefford R, Hersey P, et al. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 2016;34(34):4102-4109. https://doi.org/10.1200/JCO.2016.67.2477
  17. Stenehjem DD, Tran D, Nkrumah MA, Gupta S. PD1/PDL1 inhibitors for the treatment of advanced urothelial bladder cancer. Onco Targets Ther. 2018;11:5973-5989. https://doi.org/10.2147/OTT.S135157
  18. Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, Lunceford J, Cheng J, Chow LQM, Seiwert TY, et al. PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res. 2017;23(12):3158-3167. https://doi.org/10.1158/1078-0432.CCR-16-1761
  19. Wu TD, Madireddi S, de Almeida PE, Banchereau R, Chen YJ, Chitre AS, Chiang EY, Iftikhar H, O’Gorman WE, Au-Yeung A, et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature. 2020;579(7798):274-278.  https://doi.org/10.1038/s41586-020-2056-8
  20. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, Sher X, Liu XQ, Lu H, Nebozhyn M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362(6411):eaar3593. https://doi.org/10.1126/science.aar3593
  21. Wang Q, Li X, Qiu J, He Y, Wu J, Li J, Liu W, Han J. A pathway-based mutation signature to predict the clinical outcomes and response to CTLA-4 inhibitors in melanoma. Comput Struct Biotechnol J. 2023;21:2536-2546. https://doi.org/10.1016/j.csbj.2023.04.004
  22. Ji JH, Ha SY, Lee D, Sankar K, Koltsova EK, Abou-Alfa GK, Yang JD. Predictive biomarkers for immune-checkpoint inhibitor treatment response in patients with hepatocellular carcinoma. Int J Mol Sci. 2023;24(8):7640. https://doi.org/10.3390/ijms24087640
  23. Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;25(13):3753-3758. https://doi.org/10.1158/1078-0432.CCR-18-4070
  24. Chida K, Kawazoe A, Suzuki T, Kawazu M, Ueno T, Takenouchi K, Nakamura Y, Kuboki Y, Kotani D, Kojima T, et al. Transcriptomic profiling of MSI-H/dMMR gastrointestinal tumors to identify determinants of responsiveness to anti-PD-1 therapy. Clin Cancer Res. 2022;28(10):2110-2117. https://doi.org/10.1158/1078-0432.CCR-22-0041
  25. Song Y, Gu Y, Hu X, Wang M, He Q, Li Y. Endometrial tumors with MSI-H and dMMR share a similar tumor immune microenvironment. Onco Targets Ther. 2021;14:4485-4497. https://doi.org/10.2147/OTT.S324641
  26. Willis JA, Reyes-Uribe L, Chang K, Lipkin SM, Vilar E. Immune activation in mismatch repair-deficient carcinogenesis: more than just mutational rate. Clin Cancer Res. 2020;26(1):11-17.  https://doi.org/10.1158/1078-0432.CCR-18-0856
  27. Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 2019;38(1):255.  https://doi.org/10.1186/s13046-019-1259-z
  28. Okuyama K, Naruse T, Yanamoto S. Tumor microenvironmental modification by the current target therapy for head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2023;42(1):114.  https://doi.org/10.1186/s13046-023-02691-4
  29. Kim JH, Seo MK, Lee JA, Yoo SY, Oh HJ, Kang H, Cho NY, Bae JM, Kang GH, Kim S. Genomic and transcriptomic characterization of heterogeneous immune subgroups of microsatellite instability-high colorectal cancers. J Immunother Cancer. 2021;9(12):e003414. https://doi.org/10.1136/jitc-2021-003414
  30. Maleki Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer. 2018;6(1):157.  https://doi.org/10.1186/s40425-018-0479-7
  31. Zhao P, Li L, Jiang X, Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol. 2019;12(1):54.  https://doi.org/10.1186/s13045-019-0738-1
  32. Boyiadzis MM, Kirkwood JM, Marshall JL, Pritchard CC, Azad NS, Gulley JL. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J Immunother Cancer. 2018;6(1):35.  https://doi.org/10.1186/s40425-018-0342-x
  33. D’Angelo SP, Bhatia S, Brohl AS, Hamid O, Mehnert JM, Terheyden P, Shih KC, Brownell I, Lebbé C, Lewis KD, et al. Avelumab in patients with previously treated metastatic Merkel cell carcinoma (JAVELIN Merkel 200): updated overall survival data after >5 years of follow-up. ESMO Open. 2021;6(6):100290. https://doi.org/10.1016/j.esmoop.2021.100290
  34. Robert C, Lebbé C, Lesimple T, Lundström E, Nicolas V, Gavillet B, Crompton P, Baroudjian B, Routier E, Lejeune FJ. Phase I study of androgen deprivation therapy in combination with anti-PD-1 in melanoma patients pretreated with anti-PD-1. Clin Cancer Res. 2023;29(5):858-865.  https://doi.org/10.1158/1078-0432.CCR-22-2812
  35. Sultanbaev AV, Musin ShI, Men’shikov KV, Bilalov FS, Men’shikova IA, Sultanbaeva NI, Lipatov DO, Askarov VE, Sultanbaev MV, Nasretdinov AF, Batyrova ER. Prognosticheskoe znachenie ekstsizionnykh kolets KREC i TREC pri zlokachestvennykh novoobrazovaniyakh. Materialy V yubileinogo Mezhdunarodnogo Foruma onkologii i radiologii «Radi zhizni», 19-23 Sentyabrya 2022 g. Moscow; 2022: 191. (In Russian).
  36. Davydova NV, Prodeus AP, Obraztsov IV, Kudlai DA, Korsunskii IA. Referensnye znacheniya kontsentratsii TREC i KREC u vzroslykh. Vrach. 2021;32(6):21-28. (In Russian). https://doi.org/10.29296/25877305-2021-06-05
  37. Obraztsov IV, Gordukova MA, Tsvetkova EV, Kononova EV, Tomilin IYa, Kondratchik KL, Karelin AF, Prodeus AP, Karachunskii AI, Rumyantsev AG. Ekstsizionnye kol’tsa V(D)J rekombinatsii B- i T-kletok kak pokazateli immunologicheskoi rekonstitutsii u detei s ostrym limfoblastnym leikozom. Voprosy Gematologii/Onkologii i Immunopatologii v Pediatrii. 2016;15(4):42-50. (In Russian). https://doi.org/10.20953/1726-1708-2016-4-42-50
  38. Toubert A, Glauzy S, Douay C, Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012;79(2):83-89.  https://doi.org/10.1111/j.1399-0039.2011.01820.x
  39. Velardi E, Clave E, Arruda LCM, Benini F, Locatelli F, Toubert A. The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Semin Immunopathol. 2021;43(1):101-117.  https://doi.org/10.1007/s00281-020-00828-7
  40. Mensen A, Ochs C, Stroux A, Wittenbecher F, Szyska M, Imberti L, Fillatreau S, Uharek L, Arnold R, Dörken B, et al. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J Transl Med. 2013;11:188.  https://doi.org/10.1186/1479-5876-11-188
  41. Kwok JSY, Cheung SKF, Ho JCY, Tang IWH, Chu PWK, Leung EYS, Lee PPW, Cheuk DKL, Lee V, Ip P, et al. Establishing simultaneous T cell receptor excision circles (TREC) and K-deleting recombination excision circles (KREC) quantification assays and laboratory reference intervals in healthy individuals of different age groups in Hong Kong. Front Immunol. 2020;11:1411. https://doi.org/10.3389/fimmu.2020.01411
  42. Obraztsov IV, Gordukova MA, Severina NA, Biderman BV, Smirnova SYu, Sudarikov AB, Nikitin EA, Rumyantsev AG. Ekstsizionnye kol’tsa V(D)J-rekombinatsii B- i T-kletok kak prognosticheskii marker pri B-kletochnom khronicheskom limfoleikoze. Klinicheskaya Onkogematologiya. 2017;10(2):131-140. (In Russian). https://doi.org/10.21320/2500-2139-2017-10-2-131-140
  43. Sultanbaev AV, Musin S, Menshikov K, Sultanbaeva N, Menshikova I, Fatikhova A, Sultanbaev M, Askarov V, Kudlay D. 99P Quantitative indicators of TREC and KREC excision rings in malignant neoplasms. ESMO Open. 2023;8(1 Suppl. 2):100957. https://doi.org/10.1016/j.esmoop.2023.100957
  44. Korsunskii IA, Kudlai DA, Prodeus AP, Shcherbina AYu, Rumyantsev AG. Neonatal screening for primary immunodeficiency and T-/B-cell lymphopenia as the basis for the formation of risk groups for children with congenital pathologies. Pediatrics. The Journal named after G.N. Speransky. 2020;99(2):8-15. (In Russian). https://doi.org/10.24110/0031-403X-2020-99-2-8-15
  45. Meng X, Min Q, Wang JY. B cell lymphoma. Adv Exp Med Biol. 2020;1254:161-181.  https://doi.org/10.1007/978-981-15-3532-1_12
  46. Sultanbaev AV, Musin S, Menshikov K, Sultanbaeva N, Nasretdinov A, Menshikova I, Sultanbaev M, Kudlay D, Prodeus A. 58P Quantitative indicators of TREC and KREC excision rings in breast cancer. ESMO Open. 2023;8(1 Suppl. 4):101282. https://doi.org/10.1016/j.esmoop.2023.101282
  47. Söderström A, Vonlanthen S, Jönsson-Videsäter K, Mielke S, Lindahl H, Törlén J, Uhlin M. T cell receptor excision circles are potential predictors of survival in adult allogeneic hematopoietic stem cell transplantation recipients with acute myeloid leukemia. Front Immunol. 2022;13:954716. https://doi.org/10.3389/fimmu.2022.954716
  48. Hoolehan W, Harris JC, Byrum JN, Simpson DA, Rodgers KK. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays. Nucleic Acids Res. 2022;50(20):11696-11711. https://doi.org/10.1093/nar/gkac1038
  49. Ru H, Zhang P, Wu H. Structural gymnastics of RAG-mediated DNA cleavage in V(D)J recombination. Curr Opin Struct Biol. 2018;53:178-186.  https://doi.org/10.1016/j.sbi.2018.11.001
  50. Lu J, Van Laethem F, Bhattacharya A, Craveiro M, Saba I, Chu J, Love NC, Tikhonova A, Radaev S, Sun X, et al. Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire. Nat Commun. 2019;10(1):1019. https://doi.org/10.1038/s41467-019-08906-7
  51. Wu GS, Bassing CH. Inefficient V(D)J recombination underlies monogenic T cell receptor β expression. Proc Natl Acad Sci U S A. 2020;117(31):18172-18174. https://doi.org/10.1073/pnas.2010077117

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.