The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kostyaeva M.G.

Peoples’ Friendship University of Russia (RUDN University)

Kastyro I.V.

People’s Friendship University of Russia

Yunusov T.Yu.

City Clinical Hospital No. 40 of the Moscow Department of Health

Kolomin T.A.

NRC «Kurchatov Institute»-IMG

Torshin V.I.

Medical Institute of Peoples’ Friendship University of Russia

Popadyuk V.I.

Peoples’ Friendship University of Russian

Dragunova S.G.

Peoples’ Friendship University of Russia (RUDN University)

Shilin S.S.

Peoples’ Friendship University of Russia (RUDN University)

Kleyman V.K.

People’s Friendship University of Russia

Slominsky P.A.

The Institute of Molecular Genetics of National Research Centre «Kurchatov Institute»

Teplov A.Y.

Kazan State Medical University of the Ministry of Health of Russia

Protein p53 expression and dark neurons in rats hippocampus after experimental septoplasty simulation

Authors:

Kostyaeva M.G., Kastyro I.V., Yunusov T.Yu., Kolomin T.A., Torshin V.I., Popadyuk V.I., Dragunova S.G., Shilin S.S., Kleyman V.K., Slominsky P.A., Teplov A.Y.

More about the authors

Read: 816 times


To cite this article:

Kostyaeva MG, Kastyro IV, Yunusov TYu, et al. . Protein p53 expression and dark neurons in rats hippocampus after experimental septoplasty simulation. Molecular Genetics, Microbiology and Virology. 2022;40(1):21‑27. (In Russ.)
https://doi.org/10.17116/molgen20224001121

Recommended articles:
Morphogenesis and mole­cular regu­lation of poly­posis rhinosinusitis. Russian Journal of Archive of Pathology. 2025;(1):68-76

References:

  1. Collavin L, Lunardi A, Del Sal G. p53-family proteins and their regulators: Hubs and spokes in tumor suppression. Cell Death Differ. 2010;17(6):901-911.  https://doi.org/10.1038/cdd.2010.35
  2. Cancino GI, Yiu AP, Fatt MP, Dugani CB, Flores ER, Frankland PW, et al. p63 regulates adult neural precursor and newly born neuron survival to control hippocampal-dependent behavior. J Neurosci. 2013;33(31):12569-12585. https://doi.org/10.1523/JNEUROSCI.1251-13.2013
  3. Merlo P, Frost B, Peng S, Yang YJ, Park PJ, Feany M. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci USA. 2014;111(50):18055-18060. https://doi.org/10.1073/pnas.1419083111
  4. Sheahan S, Bellamy CO, Treanor L, Harrison DJ, Prost S. Additive effect of p53, p21 and Rb deletion in triple knockout primary hepatocytes. Oncogene. 2003;23(8):1489-1497. https://doi.org/10.1038/sj.onc.1207280
  5. Csordás A, Mázló M, Gallyas F. Recovery versus death of “dark” (compacted) neurons in non-impaired parenchymalenvironment. Light and electron microscopic observations. Acta Neuropathol. 2003;106:37-49.  https://doi.org/10.1007/s00401-003-0694-1
  6. Kastyro IV, Reshetov IV, Khamidulin GV, Shilin SS, Torshin VI, Kostyaeva MG, et al. Influence of Surgical Trauma in the Nasal Cavity on the Expression of p53 Protein in the Hippocampus of Rats. Doklady Biochemistry and Biophysics. 2021;497:99-103.  https://doi.org/10.1134/S160767292102006X
  7. Kövesdi E, Pál J, Gallyas F. The fate of «dark» neurons produced by transient focal cerebral ischemia in a non-necrotic and non-excitotoxic environment: Neurobiological aspects. Brain Research. 2007;1147:272-283.  https://doi.org/10.1016/j.brainres.2007.02.011
  8. Haider S, Naqvi F, Batool Z, Tabassum S, Perveen T, Saleem S, Haleem DJ. Decreased Hippocampal 5-HT and DA Levels Following Sub-Chronic Exposure to Noise Stress: Impairment in both Spatial and Recognition Memory in Male Rats. Sci Pharm. 2012;80(4):1001-1011. https://doi.org/10.3797/scipharm.1207-15
  9. Kirichuk VF, Tsymbal AA. Use of terahertz electromagnetic radiation at nitric oxide frequencies for the correction of thyroid functional state during stress. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk. 2010;4:37-40. PMID: 20540354.
  10. Tsymbal AA, Kirichuk VF. Changes gas and electrolyte structure of blood under influence terahertz radiations on frequencies nitrogen oxide 150,176-150,664 GHz in the conditions of stress. Patologicheskaia fiziologiia i èksperimental’naya terapiia. 2011;1:49-51. PMID: 21688667.
  11. Cui B, Wu MQ, Zhu LX, She XJ, Ma Q, Liu HT. Effect of chronic noise exposure on expression of N-methyl-D-aspartic acid receptor 2B and Tau phosphorylation in hippocampus of rats. Biomed Environ Sci. 2013;26(3):163-168.  https://doi.org/10.3967/0895-3988.2013.03.002
  12. Kastyro IV, Reshetov IV, Khamidulin GV, Shmaevsky PE, Karpukhina OV, Inozemtsev AN, et al. The Effect of Surgical Trauma in the Nasal Cavity on the Behavior in the Open Field and the Autonomic Nervous System of Rats. Doklady Biochemistry and Biophysics. 2020;492:121-123.  https://doi.org/10.1134/S1607672920030023
  13. Kirichuk VF, Tsymbal AA, Antipova ON, Tupikin VD, Maiborodin AV, Krenitskii AP, Betskii OV. Correction of acute stress-induced disorders of hemostasis using KVCh-NO apparatus. Biomedical Engineering. 2006;40(1):33-37.  https://doi.org/10.1007/s10527-006-0035-5
  14. Ravindran R, Rathinasamy SD, Samson J, Senthilvelan M. Noise stress induced brain neurotransmitter changes and the effect of Ocimum sanctum (Linn) treatment in albino rats. J Pharmacol Sci. 2005;98:354-360.  https://doi.org/10.1254/jphs.fp0050127
  15. Rezaei M, Sazegar G, Homayoun M. Effect of chronic noise exposure on neuron in the hippocampus of wistar rats. International Journal of Advanced Biotechnology and Research (IJBR). 2016;7(2):434-442.  https://doi.org/10.1186/s12199-017-0686-8
  16. Saeedi Borujeni MJ, Hami J, Haghir H, Rastin M, Sazegar Gh. Evaluation of Bax and Bcl-2 Proteins Expression in the Rat Hippocampus due to childhood Febrile Seizure. Iran J Child Neurol. 2016;10(1):53-60.  https://doi.org/10.22037/ijcn.v10i1.8202
  17. Ari I, Kafa IM, Kurt MA. Morphometric investigation of neurons in the hippocampal CA1, CA3 areas and dentate gyrus in a rat model of sepsis. Int J Morphol. 2010;28(1):183-192.  https://doi.org/10.4067/S0717-95022010000100026
  18. Kafa IM, Ari I, Kurt MA. The peri-microvascular edema in hippocampal CA1 area in a rat model of sepsis. Neuropathology. 2007;27(3):213-220.  https://doi.org/10.1111/j.1440-1789.2007.00757.x
  19. Joers A, Jaks V, Kase J, Toivo M. p53-dependent transcrip- tion can exhibit both on/off and graded response after genotoxic stress. Oncogene. 2004;23(37):6175-6185. https://doi.org/10.1038/sj.onc.1207864
  20. Bellamy C. p53 and apoptosis. British Medical Bulletin. 1997;53(3):522-538.  https://doi.org/10.1093/oxfordjournals.bmb.a011628
  21. Geng Y, Akhtar RS, Shacka JJ, Klocke BJ, Zhang J, Chen X, Roth KA. p53 Transcription-Dependent and -Independent Regulation of Cerebellar Neural Precursor Cell Apoptosis. J Neuropathol Exp Neurol. 2007;66(1):66-74.  https://doi.org/10.1097/nen.0b013e31802d4ab4
  22. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis — the p53 network. Journal of Cell Science. 2003;116:4077-4085. https://doi.org/10.1242/jcs.00739
  23. Xiang H, Kinoshita Y, Knudson CM, Korsmeyer SJ, Schwartzkroin PA, Morrison RS. Bax involvement in p53-mediated neuronal cell death. J Neurosci. 1998;18(4):1363-1373. https://doi.org/10.1523/JNEUROSCI.18-04-01363.1998
  24. Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS. Bax-dependent caspase- 3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci. 1999;19(18):7860-7869. https://doi.org/10.1523/JNEUROSCI.19-18-07860.1999
  25. Khurana V, Merlo P, DuBoff B, Fulga TA, Sharp K., Campbell SD, et al. A neuroprotective role for the DNA damage checkpoint in tauopathy. Aging Cell. 2012;11(2):360-362.  https://doi.org/10.1111/j.1474-9726.2011.00778.x
  26. Xiong Y, Zhang Y, Xiong S, Williams-Villalobo AE. A Glance of p53 Functions in Brain Development, Neural Stem Cells, and Brain Cancer. Biology. 2020;9(9):285.  https://doi.org/10.3390/biology9090285
  27. Marin Navarro A, Pronk RJ, van der Geest AT, Oliynyk G, Nordgren A, Arsenian-Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52.  https://doi.org/10.1038/s41419-019-2208-7
  28. Li Y-Q, Cheng ZW-C, Liu SK-W, Aubert I, Wong CS. P53 regulates disruption of neuronal development in the adult hippocampus after irradiation. Cell Death Discovery. 2016;2:16072. https://doi.org/10.1038/cddiscovery.2016.72
  29. Wang DB, Kinoshita C, Kinoshita Y, Morrison RS. p53 and mitochondrial function in neurons. Biochim Biophys Acta. 2014;1842(8):1186-1197. https://doi.org/10.1016/j.bbadis.2013.12.015.
  30. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. p53 opensthe mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149(7):1536-1548. https://doi.org/10.1016/j.cell.2012.05.014
  31. Ferecatu I, Bergeaud M, Rodriguez-Enfedaque A, Le Floch N, Oliver L, Rincheval V, et al. Mitochondriallocalization of the low level p53 protein in proliferative cells. Biochem Biophys Res Commun. 2009;387(4):772-777.  https://doi.org/10.1016/j.bbrc.2009.07.111
  32. Mikati MA, Abi-Habib RJ, El Sabban ME, Dbaibo GS, Kurdi RM, Kobeissi M, et al. Hippocampal Programmed Cell Death after Status Epilepticus: Evidence for NMDA-Receptor and Ceramide-Mediated Mechanisms. Epilepsia. 2003;44:282-291.  https://doi.org/10.1046/j.1528-1157.2003.22502.x
  33. Ribak CE, Baram TZ. Selective death of hippocampal CA3 pyramidal cells with mossy fiber afferents after CRH-induced status epilepticus in infant rats. Dev Brain Res. 1996;91:245-251.  https://doi.org/10.1016/0165-3806(95)00183-2
  34. Kastyro IV, Inozemtsev AN, Shmaevsky PE, Khamidullin GV, Torshin VI, Kovalenko AN, et al. The impact of trauma of the mucous membrane of the nasal septum in rats on behavioral responses and changes in the balance of the autonomic nervous system (pilot study). J Phys: Conf Ser. 2020;1611(012054). https://doi.org/10.1088/1742-6596/1611/1/012054
  35. Kastyro IV, Popadyuk VI, Reshetov IV, Kostyaeva MG, Dragunova SG, Kosyreva TF, et al. Changes in the Time-Domain of Heart Rate Variability and Corticosterone after Surgical Trauma to the Nasal Septum in Rats. Doklady Biochemistry and Biophysics. 2021;499:247-250.  https://doi.org/10.1134/S1607672921040098

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.