The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Plekhanova O.S.

Ural State Medical University;
JSC Medsi Group

Tsvirenko S.V.

Ural State Medical University

Kalacheva O.S.

JSC Medsi Group

Saveliev L.I.

Ural State Medical University;
Regional Children Hospital;
Research Institute of Medical Cell Technologies

Principles of methods for indirect determination of reference intervals

Authors:

Plekhanova O.S., Tsvirenko S.V., Kalacheva O.S., Saveliev L.I.

More about the authors

Journal: Laboratory Service. 2022;11(2): 27‑39

Read: 2932 times


To cite this article:

Plekhanova OS, Tsvirenko SV, Kalacheva OS, Saveliev LI. Principles of methods for indirect determination of reference intervals. Laboratory Service. 2022;11(2):27‑39. (In Russ.)
https://doi.org/10.17116/labs20221102127

Recommended articles:

References:

  1. CLSI Document C28—A3c. Defining, establishing, and verifying reference intervals in the clinical laboratory; approved guideline — third edition. Wayne, Pa., USA: CLSI; 2010.
  2. ISO 15189-2015. Medical laboratories — Particular requirements for quality and competence. (In Russ.).
  3. Clinical laboratory technologies. Requirements for quality of clinical laboratory tests. Part 3. Assessment of laboratory tests clinical significance. (In Russ.).
  4. Jones GRD. Estimates of Within-Subject Biological Variation Derived from Pathology Databases: An Approach to Allow Assessment of the Effects of Age, Sex, Time between Sample Collections, and Analyte Concentration on Reference Change Values. Clin Chem. 2019;65(4):579-588. Epub 2019 Jan 28. PMID: 30692116. https://doi.org/10.1373/clinchem.2018.290841
  5. Hoffmann RG. Statistics in the practice of medicine. JAMA. 1963;185:864-873. 
  6. Horn PS, Feng L, Li Y, Pesce AJ. Effect of outliers and non-healthy individuals on reference interval estimation. Clin Chem. 2001;47:2137-2145.
  7. Solberg HE, Lahti A. Detection of outliers in reference distributions: performance of Horn’s algorithm. Clin Chem. 2005;51:2326-2332.
  8. Katayev A, Balciza C, Seccombe DW. Establishing reference intervals for clinical laboratory test results; is there a better way? Am J Clin Pathol. 2010;133:175-177. 
  9. Katayev A, Fleming JK, Luo D, Fisher AH, Sharp TM. Reference intervals data mining. No longer a probability paper method. Am J Clin Pathol. 2015;143:134-142. 
  10. Cohen AC. Truncated and censored samples, theory and applications. New York: Marcel Dekker; 1991.
  11. Zierk J, Arzideh F, Kapsner LA, et al. Reference Interval Estimation from Mixed Distributions using Truncation Points and the Kolmogorov-Smirnov Distance (kosmic). Sci Rep. 2020;10:1704. Assessed december 2021. https://doi.org/10.1038/s41598-020-58749-2
  12. Wosniok W, Haeckel R. A new indirect estimation of reference intervals: truncated minimum chi-square (TMC) approach, Clinical Chemistry and Laboratory Medicine (CCLM). 2019;57(12):1933-1947. https://doi.org/10.1515/cclm-2018-1341
  13. Holmes DT, Buhr KA. Widespread Incorrect Implementation of the Hoffmann Method, the Correct Approach, and Modern Alternatives. American Journal of Clinical Pathology. 2019;151(3):328-336.  https://doi.org/10.1093/ajcp/aqy149
  14. Zhang Y, Ma W, Wang G, Lv Y, Peng Y, Peng X. Limitations of the Hoffmann method for establishing reference intervals using clinical laboratory data. Clin Biochem. 2019;63(1):79-84.  https://doi.org/10.1016/j.clinbiochem.2018.11.005
  15. Hoffmann G, Lichtinghagen R, Wosniok W. Simple estimation of reference intervals from routine laboratory tests. J Lab Med. 2015;39:389-402. 
  16. Klawonn F, Hoffmann G, Orth M. Quantitative laboratory results: normal or lognormal distribution? J Lab Med. 2020;44:143-150. 
  17. Ichihara K, Boyd JC. An appraisal of statistical procedures used in derivation of reference intervals. Clinical Chemistry and Laboratory Medicine. 2010;48:1537-1551.
  18. Haeckel R, Wosniok W, Streichert T, Members of the Section Guide Limits of the DGKL. Review of potentials and limitations of indirect approaches for estimating reference limits/intervals of quantitative procedures in laboratory medicine. Journal of Laboratory Medicine. 2021;45(2):35-53.  https://doi.org/10.1515/labmed-2020-0131
  19. Pryce JD. Level of haemoglobin in whole blood and red blood-cells, and proposed convention for defining normality. Lancet. 1960;2:333-336. 
  20. Becktel JM. Simpli ed estimation of normal ranges from routine laboratory data. Clin Chim Acta. 1970;28:119-125. 
  21. Bhattacharya CG. A simple method of resolution of a distribution into Gaussian components. Biometrics. 1967;23:115-135. 
  22. Jones GRD, Haeckel R, Loh TP, Sikaris K, Streichert T, Katayev A, et al. Indirect methods for reference interval determination — review and recommendations. Clin Chem Lab Med. 2019;57:20-29. 
  23. Baadenhuijsen H, Smit JC. Indirect estimation of clinical chemical reference intervals from total hospital patient data: application of a modified Bhattacharya procedure. J Clin Chem Clin Biochem. 1985;23:829-839. 
  24. Jones GR. Bhattacharya spreadsheet. Accessed 11 December 2021. https://www.sydpath.stvincents.com.au/index.htm
  25. Chesher D. Bellview: A tool to perform Bhattacharya analysis on laboratory data. Accessed 4 November 2021.
  26. Oosterhuis WP, Modderman TA, Pronk C. Reference values: Bhattacharya or the method proposed by the IFCC? Ann Clin Biochem. 1990;27:359-365. 
  27. Hemel JB, Hindriks FR, van der Slik W. Critical discussion on a method for derivation of reference limits in clinical chemistry from a patient population. J Automat Chem. 1985;7:20-30. 
  28. Sikaris KA. Separating disease and health for indirect reference intervals. Journal of Laboratory Medicine. 2021;45(2):55-68.  https://doi.org/10.1515/labmed-2020-0157
  29. Farrell CL, Nguyen L. Indirect Reference Intervals: Harnessing the Power of Stored Laboratory Data. Clin Biochem Rev. 2019;40(2):99-111.  https://doi.org/10.33176/AACB-19-00022
  30. Zierk J, Arzideh F, Haeckel R, Rascher W, Rauh M, Metzler M. Indirect determination of pediatric blood count reference intervals. Clin Chem Lab Med. 2013;51:863-872. 
  31. Arzideh F, Wosniok W, Gurr E, Hinsch W, Schumann G, Weinstock N, Haeckel R. A plea for intralaboratory reference limits. Part 2. A bimodal retrospective concept for determining reference limits from intra-laboratory databases demonstrated by catalytic activity concentrations of enzymes. Clin Chem Lab Med. 2007;45(8):1043-1057. PMID: 17867994. https://doi.org/10.1515/CCLM.2007.250
  32. Arzideh F, Wosniok W, Haeckel R. Reference limits of plasma and serum creatinine concentrations from intra-laboratory data bases of several German and Italian medical centres: comparison between direct and indirect procedures. Clin Chim Acta. 2010;411:215-221. 
  33. Haeckel R, Wosniok W, Torge A, Junker R. Reference limits of high-sensitive cardiac troponin T indirectly estimated by a new approach applying data mining. A special example for measurands with a relatively high percentage of values at or below the detection limit. Journal of Laboratory Medicine. 2021;45(2):87-94.  https://doi.org/10.1515/labmed-2020-0063
  34. Jones GR. Validating common reference intervals in routine laboratories. Clin Chim Acta. 2014;432:119-121. 
  35. Neumann GJ. The determination of normal ranges from routine laboratory data. Clin Chem. 1968;14:979-988. 
  36. Benaglia T, Chauveau D, Hunter DR, Young DS. Mixtools: an R package for analyzing finite mixture models. J Stat Software. 2009;32:1-29. 
  37. Macdonald P, Juan DU. Mixdist: Finite Mixture Distribution Models. https://CRAN.R-project.org/package=mixdist, 2018
  38. Brinkworth RSA, Whitham E, Nazeran H. Establishment of paediatric biochemical reference intervals. Ann Clin Biochem. 2004;41:321-329. 
  39. Schmidt RL, Straseski JA, Raphael KL, Adams AH, Lehman CM. A Risk Assessment of the Jaffe vs Enzymatic Method for Creatinine Measurement in an Outpatient Population. PLoS One. 2015;24;10(11):e0143205. https://doi.org/10.1371/journal.pone.0143205
  40. Cleophas TJ, Zwinderman AH. Gamma distribution for estimating the predictors of medical outcome scores (110 patients). In: Machine learning in medicine — a complete overview. Springer, Cham; 2015.
  41. Martin HF, Hologgitas JV, Drisoll J, Fanger H, Gudzinowicz BJ. Reference values based on populations accessible to hospitals. In: Gräsbeck R, Alström T, editors. Reference values in laboratory medicine. Chichester: Wiley; 1981.
  42. Ichihara K, Ozarda Y, Barth JH, Klee G, Shimizu Y, Xia L, et al. A global multicentre study on reference values: 2. Exploration of sources of variation across the countries. Clin Chim Acta. 2017;467:83-97. 
  43. Hyltoft Petersen P, Blaabjerg O, Andersen M, Jørgensen LG, Schousboe K, Jensen E. Graphical interpretation of confidence curves in rankit plots. Clin Chem Lab Med. 2004;42:715-724. 
  44. Poole S, Schroeder LF, Shah N. An unsupervised learning method to identify reference intervals from a clinical database. J Biomed Inform. 2016;59:276-284. 
  45. Haeckel R, Wosniok W, Torge A, Junker R. Age and sex dependent reference intervals for uric acid estimated by the truncated minimum chi-square (TMC) approach, a new indirect method. J Lab Med. 2020;44:157-163. 
  46. Harris EK, Boyd JC. On dividing reference data into subgroups to produce separate reference ranges. Clin Chem. 1990;36:265-270. 
  47. Lahti A, Hylthoft Petersen P, Boyd JC, Fraser CG, Jörgensen N. Objective criteria for partitioning Gaussian-distributed reference values into subgroups. Clin Chem. 2002;48:338-352. 
  48. Haeckel R, Wosniok W, Arzideh F. Equivalence limits of reference intervals for partitioning of population data. Relevant differences of reference limits. J Lab Med. 2016;40:199-205. 
  49. German Society of Clinical Chemistry and Laboratory Medicine. Decision limits/guideline values. Accessed 18 Dec 2021. www.dgkl.de/arbeitsgruppen/entscheidungsgrenzen-richtwerte
  50. Henny J, Vassault A, Boursier G, Vukasovic I, Brguljan PM, Lohmander M. Recommendation for the review of biological reference intervals in medical laboratories. Clin Chem Lab Med. 2016;54:1893-1900.
  51. Fraser CG. Biological Variation: From Principles to Practice. Washington, DC: AACC Press; 2001.
  52. Ishihara K, Ceriotti F, Tam TH, Sueyoshi S, Poon PMK, Thong ML. The Asian project for collaborative derivation of reference intervals: (1) strategy and major results of standardized analytes. Clin Chem Lab Med. 2013;51:1429-1442.
  53. Arzideh F, Brandhorst G, Gurr E, Hinsch W, Hoff T, Roggenbuck L. An improved indirect approach for determining reference limits from intra-laboratory data bases exemplified by concentrations of electrolytes. J Lab Med. 2009;33:52-66. 
  54. Bolann BJ. Easy verification of clinical chemical reference intervals. Clin Chem Lab Med. 2013;51:279-281. 
  55. Kallner A, Gustavsson E, Hendig E. Can age and sex related reference intervals be derived for non-healthy and non-diseased individuals from results of measurement in primary health care? Clin Chem Lab Med. 2000;38:633-654. 
  56. Farrell CJL, Nguyen L, Carter AC. Data mining for age-related TSH reference intervals in adulthood. Clin Chem Lab Med. 2017;55:213-215. 
  57. Grossi E, Colombo R, Cavuto S, Franzini C. The REALAB project: a new method for the formulation of reference intervals based on current data. Clin Chem. 2005;51:1232-12340. https://doi.org/10.1373/clinchem.2005.047787
  58. Wu AH, at al, 2009; Hilderink JM, et al, 2018; Kavano R. et al., 2016.
  59. Martinez-Sanchez L, Marques-Garcia F, Ozarda Y, Blanco A, Brouwer N, Canalias, F, Cobbaert C, Thelen M, den Elzen W. Big data and reference intervals: rationale, current practices, harmonization and standardization prerequisites and future perspectives of indirect determination of reference intervals using routine data. Advances in Laboratory Medicine. Avances en Medicina de Laboratorio. 2021;1:9-16.  https://doi.org/10.1515/almed-2020-0034.
  60. Ammer T., Schützenmeister A., Prokosch HU, Rauh M, Rank CM, Zierk J. RefineR: A Novel Algorithm for Reference Interval Estimation from Real-World Data. Sci Rep 11, 16023 (2021). https://doi.org/10.1038/s41598-021-95301-2

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.