Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Хирманов В.Н.

«Всероссийский центр экстренной и радиационной медицины им. А.М. Никифорова» МЧС России, Санкт-Петербург, Россия

Натрийуретические пептиды — семейство регуляторов системы кровообращения

Авторы:

Хирманов В.Н.

Подробнее об авторах

Прочитано: 4039 раз


Как цитировать:

Хирманов В.Н. Натрийуретические пептиды — семейство регуляторов системы кровообращения. Кардиология и сердечно-сосудистая хирургия. 2017;10(1):3‑25.
Khirmanov VN. The role of natriuretic peptides in regulation of cardiovascular system. Russian Journal of Cardiology and Cardiovascular Surgery. 2017;10(1):3‑25. (In Russ.)
https://doi.org/10.17116/kardio201710123-25

Рекомендуем статьи по данной теме:
Кар­ди­оген­ная де­мен­ция. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2025;(8):43-49

В конце прошлого века настоящим открытием в сфере биологии и медицины стала филогенетически древняя, но прежде неведомая ученому миру, биологическая система, обеспечивающая посредством так называемых натрийуретических пептидов регуляцию и интеграцию систем кровообращения, водно-электролитного и энергетического гомеостаза. В начале нового, XXI века настала пора осознать и систематизировать собранный — уже огромный объем информации об этой живой системе, чтобы облегчить возможность использовать новые знания в интересах практической медицины.

Открытие натрийуретических пептидов не было мимолетным явлением. Оно стало возможным благодаря накоплению с течением времени множества ярких, но поначалу разрозненных научных наблюдений. Вот некоторые из них.

В 1921 г. Отто Лёви [188] в эксперименте с перекрестной циркуляцией обнаружил возможность гуморального (посредством ацетилхолина), а не только нейрогенного переноса регуляторного сигнала, настраивающего работу сердца, а именно частоту его ритма. Это исследование удостоено Нобелевской премии. Методология перекрестного кровообращения помогла Хью Де Уорденер [65] позднее (1961) прийти к выводу о существовании некоей циркулирующей в крови натрийуретической субстанции, регулирующей выведение воды и натрия и благодаря этому — объем циркулирующей крови и уровень артериального давления. Подобные факты не укладывались в теорию нервизма, но усиливали альтернативную концепцию гуморальной регуляции физиологических систем и создавали предпосылки для появления более широкого — нейрогуморального ракурса при рассмотрении физиологической регуляции.

Тем временем электронная микроскопия выявила странное сходство предсердных миоцитов с хромаффинными клетками надпочечников. И в тех, и в других клетках Бруно Киш [155] (1956) обнаружил похожие органеллы — «секреторные гранулы». Вскоре установили, что в гранулах надпочечниковых клеток накапливаются секретированные катехоламины. Однако без ответа долго оставался вопрос о том, а что же хранится в гранулах предсердных миоцитов? Лишь спустя четверть века (в 1981 г.) последовательное изучение этого вопроса привело канадских ученых во главе Адольфо Де Болд [62] к ключевой экспериментальной находке: экстракт ткани предсердий при внутривенном введении вызывает мощный натрий- и диуретический эффект, а также — сгущение крови.

Этот факт сразу привлек внимание биологов и врачей, что вместе с коммерческим интересом со стороны фармацевтической индустрии обеспечило необычайную интенсивность дальнейших исследований. Удача заключалась и в том, что к этому времени методическая база медико-биологической науки значительно расширилась за счет появления молекулярно-генетических, генно-инженерных, иммунохимических и цитохимических приемов исследований. Научные данные о натрийуретическом феномене, собиравшиеся во множестве разных лабораторий мира, стали формировать мощный поток разносторонней информации.

На раннем этапе изучения вновь открытых натрий- и диуретических эффектов было установлено, что их вызывает пептид, секретируемый мышечными клетками предсердий [63]. Его предлагалось называть предсердным натрийуретическим пептидом (atrialnatriureticpeptide — ANP) или предсердным натрийуретическим фактором (atrialnatriureticfactor — ANF), предсердным натрийуретическим гормоном (atrialnatriuretichormone — ANH), атриопептидом (atriopeptide) и т. д. Наиболее употребительным стал первый термин — «предсердный натрийуретический пептид» (ANP). Вскоре была расшифрована аминокислотная последовательность этой молекулы и структура гена, кодирующего ее выработку. Это обеспечило возможность не только химического ресинтеза, но и биосинтеза.

Тем временем выяснялись новые факты. Очень близкий по строению пептид со схожими биологическими свойствами был экстрагирован из ткани мозга — он был назван мозговым натрийуретическим пептидом (brain natriuretic peptide — BNP) [302]. Натрийуретические пептиды (ANP, BNP) представлены не только в сердце и в мозге, но и в надпочечниках, в сосудах. Выявлен еще и натрийуретический пептид С-типа (C-type natriuretic peptide — CNP), структурно весьма близкий к двум предыдущим [303]. Он оказался очень широко распространенным в организме, благодаря тому, что места его выработки рассеяны в сосудистом русле. Наконец, был открыт еще один биологически активный представитель семейства натрийуретических пептидов — уродилатин. Его чуть более длинная, чем у ANP, молекула образуется и секретируется в эпителиоцитах дистальных почечных канальцев в результате своеобразного процессинга их общей молекулы-предшественницы пре-про-ANP [13, 280]. Все это свойственно млекопитающим.

У низших позвоночных были открыты иные (филогенетически болеее древние) натрийуретические регуляторы. Из яда змеи Dendroaspis angusticeps был выделен натрийуретический пептид, названный дендроасписным (dendroaspis natriuretic peptide — DNP), а из миокарда желудочков угря и форели — вентрикулярный (ventricular natriuretic peptide — VNP) [281, 309]. Врачу знать о них стоит уже потому, что в качестве молекул, близких к человеческим натрийуретическим пептидам, и в то же время располагающих выгодными фармакологическим свойствами — устойчивостью к деградации человеческими протеолитическими ферментами [12] — они уже стали прототипами для создания лекарств — дизайнерских натрийуретических пептидов [175, 340]. К тому же обнаружено, что в организме людей эти оккультные натрийуретические пептиды, в частности DNP, все же присутствуют [274]. Высказано предположение, что они могут играть некую роль в развитии болезней человека, в частности — сердечной недостаточности [177, 274].

Основные биологически активные натрийуретические пептиды человека — это короткие циклические молекулы, длиной от 22 до 32 аминокислотных фрагментов: ANP состоит из 28, BNP — из 32, а CNP— 22 аминокислотных остатков. Кольцевидная структура необходима для «узнавания» молекулы рецепторами. Все три названных пептида являются С-концевыми фрагментами трех значительно более длинных полипептидов-предшественников (пре-про-пептидов), продукция которых раздельно закодирована генами NPPA, NPPB и NPPC (atrial natriuretic peptide precursor A, B, C).

После синтеза пре-про-пептид может депонироваться в клетках. Именно это происходит в предсердных кардиомиоцитах с предшественниками ANP и BNP, скапливающимися в них в форме упомянутых секреторных гранул. Для прекурсоров ANP, BNP и CNP, образующихся вне предсердий, депонирование в форме гранул не характерно. Исключение составляют специфические гранулы хромаффинных клеток надпочечников [221, 232, 310].

Для образования активных молекул — ANP, BNP или CNP требуется их специфическое протеолитическое отщепление от пре-про-субстанций. В ходе посттрансляционного процессинга вначале от пре-про-пептида отделяется сигнальная молекула и образуется про-пептид. Накапливается информация о том, что и он, в частности про-ANP, про-BNP, или его фрагменты обладают биологической активностью [132]. Дальнейшее протеолитическое расщепление приводит к образованию, несомненно, к биологически активной молекулы пептида (ANP, BNP, CNP). Этот процессинг осуществляют дифференцированно две специфические трансмембранные сериновые протеазы (пропептидные конвертазы) — корин (вначале выявленный в кардиомиоцитах, превращающий про-ANP в ANP, а про-BNP — в BNP в клетках и в циркулирующей крови) [16] и фурин (внутриклеточная протеаза, трансформирующая про-BNP и про-CNP соответственно в BNP и CNP [131, 356] (рис. 1).

Рис. 1.Активная молекула натрийуретических пептидов (НП) (ANP, BNP, CNP), ее предшественники, энзимы, обеспечивающие образование и разрушение НП, и места их воздействия.

Натрийуретические пептиды разрушаются быстро. Деградация обеспечивается несколькими процессами: рецепторным клиренсом (который у всех трех активных молекул начинается со связывания с клеточным рецептором NPR-C и заканчивается внутриклеточным распадом), выведением почками и печенью, а также метаболическим разрушением (за счет действия экстрацеллюлярных энзимов). Метаболическая деградация осуществляется несколькими специфическими протеазами: нейтральной эндопептидазой (neutral endopeptidase — NEP/НЭП), дипептидилпептидазой-IV (dipeptidyl peptidase IV — DPPIV) и инсулин-разрушающим энзимом (insulin degrading enzyme — IDE) [82, 343].

Натрийуретические пептиды могут выступать в роли гормонов, т. е. вырабатываясь локально (в сердце или сосудах), обеспечивать регуляцию отдаленных органов и организма в целом. Такая роль явно присуща ANP, два других представителя семейства (BNP и, особенно, CNP) скорее являются резервными гормонами, действие которых проявляется при экстраординарных физиологических нагрузках или при патологических состояниях. В то же время все рассматриваемые биологически активные пептидные молекулы (ANP, BNP, CNP) участвуют в регуляции функций тех тканей и органов, в которых они вырабатываются (т.е. играют диссеминированную паракринную роль), либо лишь данных клеток (осуществляют ауто-/интракринную функцию). Уродилатину отводится исключительно паракринная роль (в пределах почки).

У семейства натрийуретических пептидов имеются общие физиологические черты. Однако прежде чем сфокусировать внимание на них, необходимо рассмотреть частные свойства, с одной стороны, тандема натрийуретических пептидов ANP и BNP и, с другой — CNP, проявляющиеся в физиологических и в некоторых патофизиологических ситуациях. Кроме того, потребуется дополнительно рассмотреть, как ANP, BNP и CNP влияют на функции мозга, в специфических структурах которого, отделенных гематоэнцефалическим барьером, они вырабатываются.

ANP и BNP

Предсердный и мозговой натрийуретические пептиды (ANP и BNP), секретируемые в основном сердцем в ответ на гемодинамические нагрузки, а также на связанные с ними нейрогуморальные стимулы, играют важную роль в регуляции объема, давления, водно-электролитного состава циркулирующей крови, энергетического метаболизма организма, а также в функциональной и структурной адаптации сердца и сосудов к условиям кровообращения.

ANP и BNP (далее обозначаются как ANP/BNP) описываются в этом обзоре совместно, если речь не идет о специфических свойствах одного из этих пептидов или их отличиях друг от друга. Они представляют собой тандем молекул-регуляторов, системно скоординированных — от геномного программирования, синтеза, депонирования и секреции до конечных биологических эффектов и, наконец, биодеградации.

Гены и их экспрессия.В геноме ANP и BNP представлены генами своих предшественников NPPA и NPPB, расположенными тандемом (у человека — в первой хромосоме) [122, 124, 313]. Между тем названные гены различно экспрессированы в сердце, мозге, в других органах и тканях [172, 342]. В базальных условиях концентрации ANP и BNP в плазме крови составляют 3,2—19,5 и 1,4—14,5 пмоль/л [250, 265], а концентрации в тканях предсердий и желудочков ANP — 9600 и 37 пмоль/г, а BNP — 250 и 18 пмоль/г [209]. Таким образом, и в предсердиях, и в желудочках выработка ANP обычно преобладает над продукцией BNP [228]. Вне сердца (в надпочечниках, легких, дуге аорты, крупных сосудах) ANP и BNP образуются в гораздо меньших количествах [87, 228].

Продукция и депонирование, секреция и разрушение.В предсердных миоцитах секретируется главным образом ANP, причем этот пептид (точнее его предшественник) может депонироваться в специфических гранулах [28, 262, 319]. Такие депозиты не характерны для иных клеток, в том числе для миоцитов желудочков, в которых косекретируются ANP и BNP.

Секреция ANP и BNP происходит под влиянием общих стимулов. Таковыми являются механическое растяжение сердца избыточным объемом или давлением крови (имеет значение уровень как конечного диастолического, так и особенно конечного систолического напряжения миокарда) [58, 167, 178, 192], а также множество химических стимулов — эндотелин-1 [178,262], некоторые молекулярные формы ангиотензина [43, 95, 239], тиреоидные гормоны [159, 204], окситоцин [107], гипоксия [15, 52], медиаторы симпатической нервной системы [58, 249], а также высокий уровень потребления натрия [265].

Уровень секреции, вызванный нагрузками, значительно преобладает над уровнем базальной секреции ANP и BNP [227]. При острых гемодинамических перегрузках гранулы в предсердных миоцитах быстро опорожняются, последующий процессинг просубстанций сопровождается выбросом в кровь ANP/BNP. При хронических нагрузках (гипертрофия, сердечная недостаточность) в большей мере возрастает секреция BNP [189].

ANP и BNP быстро разрушаются — период полувыведения из плазмы у ANP составляет всего 2—3 мин, а у BNP он достигает 21—23 мин [33, 56, 57, 359]. Относительно большая устойчивость BNP (по сравнению с ANP) сопряжена с его менее интенсивным рецепторным клиренсом (посредством рецептора NPR-C) и меньшей подверженностью энзиматическому разрушению (как нейтральной эндопептидазой, так и инсулиндеградирующим ферментом) [209, 247].

Рецепторы, количественные особенности локальных эффектов. ANP и BNP располагают общими рецепторами двух типов. Один из них — эффекторный рецептор NRP-A или GC-A (natriuretic peptide receptor-A или guanylyl cyclase receptor-A) связан с гуанилатциклазой-А. Он обеспечивает детекцию ANP/BNP на поверхности рабочей клетки, перенос сигнала к гуанилатциклазе-А и благодаря этому основные действия этих регуляторов. Аффинность к этому рецептору у BNP в 10 раз слабее, чем у ANP [162]. С другим рецептором (NPR-C) связано разрушение как ANP, так и BNP (но также и CNP). Он является клиренс-рецептором [261] и не связан с гуанилатциклазой. Исследования последнего времени показали многообразие компартментации (путей и механизмов внутриклеточной передачи сигнала) рецепторов натрийуретических пептидов.

ANP и BNP действуют в целом синэргично и аддитивно. Прирост концентрации в крови одного из пептидов приводит к приросту концентрации другого вследствие пресыщения общего клиренс-рецепторного механизма [128]. Эквимолярные концентрации ANP и BNP могут вызывать как эквивалентные, так и неэквивалентные биологические эффекты. Это зависит от ряда факторов — текущего состояния (норма или патология) [52, 87, 128], компартментации [108], взаимодействия с механизмами, не связанными с гуанилатциклазной, в частности, с модулирующим влиянием еще одного участника натрийуретического «трио» — CNP [48]. Кроме того, выраженность некоторых эффектов ANP и BNP (в частности, на ренин-ангиотензин-альдостероновую систему) может различаться. В частности, описано, что ANP значительно сильнее, чем BNP, подавляет секрецию альдостерона [41, 253]. Наоборот, BNP в значительно большей степени, чем ANP, стимулирует клубочковую фильтрацию, а также и экскрецию натрия при сердечной недостаточности [52]. Некоторые ткани (например адреналовая) более аффинны к BNP [101]. И все же в качественном отношении эффекты ANP и BNP в основном идентичны.

Влияние ANP/BNP на функции почек.Ключевым свойством натрийуретических пептидов является стимуляция экскреции и экстравазации натрия и воды при возникновении их избытка в сосудистом русле, а в долгосрочном аспекте — поддержание водно-электролитного гомеостаза.

Влияния натрийуретических пептидов на функции почек изучены в основном на примере ANP. В то же время эквимолярные дозы ANP и BNP вызывают равное диуретическое и натрийуретическое действие [128], располагая общими рецепторами. Поэтому нефротропные эффекты пептидов (ANP/BNP) возможно рассматривать обобщенно.

ANP/BNP могут оказывать множество влияний на работу клубочков, канальцев и сосудистой системы почек — непосредственных (за счет подавления образования гранулярной гуанилатциклазы, цГМФ и зависимых от нее протеинкиназ) или опосредованных (посредством предотвращения воздействия почки симпатической, ренин-ангиотензин-альдостероновой систем, вазопрессина и т. д.) [243, 267, 284, 288, 318].

В изолированных почках, особенно на фоне вазоконстрикции, ANP/BNP увеличивают кровоток [37, 59], последний, однако, может изменяться мало или даже уменьшаться при действии в целом организме из-за снижения системного артериального давления [115]. Скорость клубочковой фильтрации возрастает благодаря увеличению фильтруемой фракции [89, 115]. Афферентные артериолы клубочков расширяются, а эфферентные артериолы суживаются, поэтому градиент давления увеличивается [76, 195]. Кроме того, за счет релаксации мезангиальных клеток увеличивается площадь эффективной поверхности почечного фильтра [14, 89]. При действии малых доз ANP/BNP, не достаточных для влияния на скорость клубочковой фильтрации, диуретический эффект все же есть. Это свидетельствует о том, что основными влияниями ANP/BNP на диурез и натрийурез являются канальцевые эффекты [26].

Проксимальные канальцы не относятся к основным точкам приложения ANP/BNP, однако здесь они обеспечивают подавление патологической реабсорбции воды и натрия, вызванной антинатрийуретическими факторами (ангиотензином, норадреналином), например, при сердечной недостаточности [26, 36, 80].

В толстом колене петли Генле происходит уменьшение реабсорбции натрия и хлора — как непосредственное, так и связанное с подавлением действия вазопрессина [223, 225]. Не выявлено влияний ANP/BNP на дистальные извитые канальцы [26].

Собирательные трубочки внутренних медуллярных сегментов в физиологических условиях являются главным местом действия ANP/BNP. В этом участке нефрона наряду с клубочками максимальны плотность специфических рецепторов и подавление реабсорбции натрия [26, 223, 255, 295, 316]. Кроме того, ANP/BNP ослабляют базальную и стимулированную вазопрессином реабсорбцию натрия и воды в кортикальных собирательных трубках [224].

Терминальные отделы нефрона — собирательные трубочки внутреннего медуллярного слоя осуществляют окончательную реабсорбцию не только натрия, но и воды (при условии стимуляции вазопрессином). Реабсорбция здесь, как и в других участках нефрона, вначале состоит в его пассивном поступлении со стороны просвета канальца в эпителиальные клетки, а затем в активном выкачивании натрия в интерстициальное пространство при помощи расположенного здесь насоса (Na+-, K+-АТФаза). Кроме того, натрий может активно секретироваться в канальцевую мочу [345]. Натрийуретические пептиды ANP/BNP способны влиять на все упомянутые процессы: закрывать натриевые каналы посредством рецепторов NPR-A [103, 185], снимать цАМФ-зависимые эффекты вазопрессина [223], стимулировать секрецию натрия [296] и, кроме того, подавлять активность натриевого насоса [26].

Системное устранение рецепторов NPR-A (при помощи генной инженерии) сокращает возможность быстрого устранения избытка натрия и воды — примерно на 1/3 [156, 263]. Если же данные рецепторы изъяты только в сосудистом эндотелии, то эта способность тоже существенно уменьшается, но лишь на 11—13% [264, 291]. Тем не менее названный факт подчеркивает важную роль в поддержании баланса жидкости в организме регуляции проницаемости сосудов посредством ANP/BNP и его основного эффекторного рецептора NPR-A.

Влияние ANP/BNP на проницаемость микрососудов. Одновременно с открытием ANP было обнаружено его свойство увеличивать гематокрит [62]. Вначале этому явлению не придавали особого значения, ибо было вполне логично полагать, что оно опосредовано диуретическим эффектом. Позднее было установлено, что ANP может вызывать сгущение крови и сокращение объема циркулирующей плазмы без участия почек, т. е. независимо от форсирования фильтрации и выделения мочи (например, после нефрэктомии) [9].

Усиление проницаемости эндотелия вызывают как ANP, так и BNP [11, 34, 101], воздействуя на рецепторы NPR-A, и активируя гуанилатциклазу [164, 264, 277]. Это приводит к усилению проницаемости гликокаликса эндотелиоцитов [25, 46]. Кроме того, из сосудистого русла в интерстиций совместно с водой выводится альбумин [61, 130], а за счет повышения посткапиллярного сопротивления повышается давление в микрососудах [306].

Описанное происходит как в кровеносных, так и в лимфатических микрососудах разных тканей (кишечника, кожи, жировой клетчатки, селезенки, почек, легких, мышц, гематоэнцефалического барьера), но выражено в разной степени [139, 278, 306, 331].

Утечка жидкости при возникновении ее избытка в сосудистом русле может происходить быстро, интенсивно и реально влиять на объем циркулирующей плазмы — ограничивать его и снижать артериальное давление [331, 336]. Однако в обычных физиологических условиях требуется лишь мелкая регулировка проницаемости [164].

Влияние ANP/BNPна сердце и сосуды.В экспериментах с культурами кардиомиоцитов, препаратами миокарда и изолированными сердцами установлено, что ANP/BNP вызывают снижение силы и скорости сокращения — как при воздействии инотропных стимуляторов, так и вне этих влияний [308, 338, 366]. Непосредственный отрицательный инотропный эффект связан с фундаментальным свойством ANP/BNP подавлять образование цГМФ и специфические протеинкиназы, приводящим к изменению метаболизма кальция за счет ослабления проницаемости медленных кальциевых каналов L-типа [325].

Сложными взаимодействиями в едином организме между системой кровообращения, системой ANP/BNP, а также регуляторными влияниями на эти системы возможно объяснить тот факт, что в итоге реакция сократимости сердца invivo на увеличение концентрации ANP/BNP может приближаться к нулю или даже выражаться в приросте. В самом деле, наряду с данными об отрицательном инотропном эффекте ANP/BNP invivo [229, 251, 285, 286] имеются свидетельства как отсутствия этого эффекта, особенно при их введении здоровым индивидуумам или больным сердечной недостаточностью [8, 75, 116, 137, 240, 289], так и факты улучшения сократимости миокарда при введении больным сердечной недостаточностью [201, 235]. Детальные анимальные эксперименты показывают, что к изменению направленности и величины вектора контрактильной реакции сердца на ANP/BNP может приводить развитие гипертрофии миокарда или сердечной недостаточности. При этих обстоятельствах отрицательный инотропный эффект может уменьшаться [308], более того, сократимость может даже увеличиваться [229].

До последнего времени открытым оставался вопрос о том, только ли балансирование регуляторных взаимодействий стоит за этой двойственностью? Недавно по этому поводу был получен поразительный ответ. Благодаря проявляющейся в определенных патофизиологических ситуациях (в частности, при начальной гипертрофии миокарда) уникальной способности к перенаправлению в пространстве кардиомиоцита сигнала ANP/BNP и перераспределению цГМФ-зависимых фосфодиэстераз (реверсия компартментации), он может выражаться в усилении контрактильности, связанной с β1,2-адренорецепторой [242].

ANP/BNP благоприятно воздействуют на диастолическую функцию миокарда левого желудочка — вызывают ускорение расслабления, снижение давления в конце диастолы. Подобное наблюдается как у здоровых людей [8, 114, 137, 240], так и у больных с сердечной недостаточностью [201, 212, 229], у которых эндогенная продукция ANP/BNP, как правило, увеличена [347]. Диастолические эффекты могут быть связаны как с фундаментальным механизмом (подавление цГМФ) с изменением внутриклеточного метаболизмом кальция), так и с созданием ряда косвенных предпосылок — снижение давления и объема в конце систолы, увеличение конечной систолической эластичности миокарда.

Влияние ANP/BNP вызывает увеличение частоты синусового ритма и ускорение синоатриальной и внутрипредсердной проводимости, причем как благодаря тому, что эти пептиды активируют собственные рецепторы NPR-A (приводя к увеличению тока кальция L-типа), так и в силу того, что они стимулируют рецепторы NPR-C (подавляя фосфодиэстеразу-3) [18, 19, 297]. Установлено, что абляция гена NPR-C приводит к развитию синдрома слабости синусового узла и наклонности к развитию фибрилляции предсердий [78]. Хроно- и батмотропный эффекты и их выраженность могут также зависеть от ослабления симпатической эфферентации и усиления вагусных влияний на миокард, вызванных ANP/BNP [113, 183].

И в эндотелиоцитах, и в гладкомышечных клетках артерий, включая аорту, сонные и легочные артерии, плотно (хотя и неравномерно) представлены рецепторы — NPR-А, обеспечивающие прямое действие ANP/BNP [238]. Непосредственный эффект релаксации магистральных артериальных сосудов под действием этих натрийуретических пептидов хорошо доказан invitro (многие артерии мышечного типа и вены не обладают высокой чувствительностью). Интактность эндотелия для развития данного эффекта не обязательна [341, 354], при этом в эндотелиоцитах имеется масса рецепторов к ANP/BNP. Абляция генов этих рецепторов, выполненная избирательно в гладких мышечных клетках сосудов, приводит к предотвращению их релаксации при контакте с данными пептидами (что не влияет на базальный уровень артериального давления). Однако такого не происходит при лишении эндотелия данных рецепторов — это вызывает гипертензию при сохранении вазорелаксантного действия ANP/BNP [120, 264, 292].

Хронические влияния ANP/BNP invivo выражаются в расширении артерий сопротивления, при этом могут сказываться опосредованные эффекты натрийуретических пептидов — подавление симпатического тонуса, стимуляция выработки оксида азота и ослабление эффектов ангиотензина-II [198, 257]. ANP обладаетуниверсальной способностью уменьшать тонус гладкой мускулатуры артерий, стимулированный разнообразными вазопрессорами, в том числе эндогенными — адреналином, норадреналином, ангиотензином, эндотелином [23, 248]. Это проявляется при концентрациях пептида, в несколько раз меньших, чем концентрации вазопрессоров, вызвавших спазм [27, 72, 125, 210, 264, 353]. Причем релаксацию вызывают концентрации ANP, соответствующие верхнему уровню нормы, т. е. данный эффект имеет физиологический характер [31]. Механизм вазорелаксации связан с влиянием на внутриклеточный транспорт кальция и калия [83, 91, 230, 231, 283]. Отмечаются значительные различия в чувствительности артерий из разных бассейнов к действию ANP — более чувствительны аорта, почечные, легочные, эпикардиальные коронарные артерии [1, 125, 158, 173, 210, 231, 234, 283].

При внутривенном или интракоронарном введении ANP/BNP также наблюдается значительное расширение эпикардиальных артерий с увеличением скорости кровотока, не меньшем, чем при введении нитроглицерина, при малой реакции интрамиокардиальных артерий [74, 79, 231]. ANP (в меньшей степени BNP и CNP), выступая в роли антагониста эндотелина, расширяют коронарные артерии [352]. В клинических условиях введение ANP в коронарную артерию также приводит к значительной дилатации ее проксимального участка, улучшению коллатерального кровотока в ишемизированной зоне миокарда [57, 168]. В экспериментальных условиях и у добровольцев не выявлено влияния натрийуретических пепетидов в физиологических и фармакологических дозах на скорость кровотока крупных внутримозговых или диаметр экстрацеребральных артерий [104].

Релаксация вен под влиянием ANP/BNP выражена меньше, чем в артериях, и проявляется при более высоких концентрациях [348]. При уровне ANP в крови, близком к физиологическому, она минимальна [88, 121], но становится отчетливой при создании столь высоких концентраций, которые наблюдаются при сердечной недостаточности [276]. Тем не менее ANP может ослаблять базальный венозный тонус и особенно гипертонус, вызванный избытком объема жидкости, увеличивая растяжимость и емкость вен, уменьшая венозный возврат к сердцу и снижение ЦВД [11, 72, 101, 353]. Экзогенные ANP/BNP вызывают расширение вен и увеличивают их емкость, если исходно имелась констрикция, вызванная теми или иными агонистами контрактильности [55, 88, 121, 187, 348]. Invivo введение ANP вызывает снижение центрального венозного давления, давления заполнения камер сердца [101], что может быть связано как с влиянием на вены, так и с иными факторами [55, 56].

Влияние ANP/BNPна структурное состояние сердца и сосудов.ANP/BNP существенно влияют на строение сосудов и сердца посредством множества механизмов: снижения артериального давления, подавления активности ренин-ангиотензин-альдостероновой и симпатической систем, эндотелина (ET-1), прямого воздействия на фактор транскрипции GATA4, трансформирующий фактор β1, метаболизм внутриклеточного кальция и т. д. [153].

В сердце ANP/BNP подавляют рост (гипертрофию) кардиомиоцитов, пролиферативную и функциональную активность фибробластов (выработку коллагеновых волокон и синтез матрикса). Взаимосвязь между экспрессией натрийуретических пептидов в ткани миокарда, содержанием их (или маркеров) в крови и выраженностью структурного ремоделирования сердца (гипертрофия, дилатация, фиброз) подтверждают клинические исследования [21, 109, 150, 151, 311]. Свидетельства антигипертрофической, антифиброзной роли ANP/BNP были получены в классических анимальных опытах [39, 90, 330]. Однако наиболее важны и убедительны данные экспериментов с применением генно-инженерных методов. В них, в частности, было доказано, что основные влияния ANP/BNP на структуру сердца первичны, то есть могут развиваться независимо от артериального давления [153].

В экспериментальных условиях продемонстрировано также, что в сосудах эти пептиды подавляют рост и пролиферацию гладкомышечных клеток [6, 129, 141], а также регулируют рост и миграцию эндотелиоцитов, играющих существенную роль в ангиогенезе и формировании структуры сосудов [142, 163].

Взаимодействие ANP/BNPс ренин-ангиотензин-альдостероновой системой. Названные регуляторные системы являются физиологическими антагонистами. ANP/BNP блокируют все звенья ренин-ангиотензин-альдостероновой системы: секрецию ренина [36, 37, 267], образование и воздействие ангиотензина-II на органы-мишени (в том числе в центральной нервной системе) [323, 338], секрецию альдостерона и его эффекты. В свою очередь ренин-ангиотензин-альдостероновая система, главным образом, посредством ангиотензина-II, способна ослаблять действие ANP/BNP [293]. Структурной основой такого антагонизма служит соседство специфических рецепторов ANP/BNP и ангиотензина-II во всех основных эффекторных органах, учаcтвующих в регуляции артериального давления и водно-электролитного баланса (в головном мозге, в симпатических ганглиях, в сосудах, сердце и в надпочечниках) [199, 252].

Действие ANP/BNP на надпочечники выражается главным образом в подавлении секреции альдостерона — как базальной, так и стимулированной ангиотензином-II, калием и АКТГ [17, 49, 64, 99, 161, 273]. ANP/BNP не только доставляются в надпочечники с кровью, но и вырабатываются в них.

Влияние ANP/BNPна вегетативную нервную систему. Установлено, что тандемные пептиды обладают свойствами симпатического антагониста и парасимпатического агониста, причем фактически изучался главным образом ANP.

Действуя посредством гуанилат-циклазного механизма [320], ANP (ANP/BNP) активируют вагусные афферентные рецепторы барорефлексов [7, 77, 135, 171, 211, 278, 322]. Этот механизм, по-видимому, имеет отношение к феномену относительной или абсолютной (парадоксальной при гипотензии) брадикардии и проявляется даже при низких (негипотензивных) концентрациях ANP [7, 77, 84]. Важно, что введение ANP или увеличение его концентрации в циркулирующей крови, благодаря лекарственному воздействию (ингибитором нейтральной эндопептидазы), приводит к увеличению чувствительности кардиопульмональных вагусных рефлексов, включая рефлекс Бецольда—Яриша [320, 321]. В то же время ANP обладает свойствами антагониста симпатической нервной системы, способного оказывать подавляющие эффекты на всех уровнях барорефлекторной дуги.

Это было продемонстрировано, в частности, в отношении афферентного звена дуги в опытах с синокаротидной и аортальной денервацией, селективным охлаждением волокон блуждающих нервов, каротидной компрессией и декомпрессией, активацией и деактивацией рецепторов низкого давления. ANP усиливает рефлекторную реакцию на повышение артериального и центрального венозного давления. Однако возникающие в результате этого урежение частоты ритма сердца, снижение симпатического тонуса и давления в артериях и венах приводят к ослаблению секреции самого пептида [5, 10, 86, 135, 171, 211, 278, 312, 323].

Наряду с этим ANP способен ослаблять эфферентное звено барорефлекса, подавляя проведение на уровне симпатических ганглиев, а также в пре- и постсинаптических терминалях. Причем речь идет как о непосредственном воздействии на них ANP, так и опосредованном блокадой проведении на этом уровне (за счет активации пептидом афферентных вагусных хеморецепторов) [5, 136, 191, 213, 220, 327].

Наконец, имеется ряд экспериментальных свидетельств того, что ANP вызывает симпатоингибиторные эффекты, оперируя на уровне центральной нервной системы — как непосредственно [136, 279], так и подавляя эффекты внутримозгового ангиотензина-II [298, 335] и вазопрессина [363].

Влияние ANP и BNP на метаболизм углеводов и липидов.Наряду с участием в регуляции кровообращенияANP/BNP системно модулируют мобилизацию и утилизацию важнейших субстратов образования энергии.

Прирост (в физиологических пределах) концентрации ANP в плазме крови сопровождается выходом липидов из подкожной жировой клетчатки и их форсированным окислением в скелетной мускулатуре [29, 81, 205]. ANP участвует в активации липолиза, вызванного физической активностью, и при этом усиленно секретируется в кровоток [206].Активация липолизаопосредована цГМФ, она альтернативна по отношению к цАМФ-зависимым эффектам катехоламинов, не чувствительна к влияниям инсулина [207]. Оба участника тандема (ANP/BNP) стимулируют преобразование белой жировой ткани (депонируемый субстрат) в бурый жир (субстрат образования энергии и тепла) [32].

Такие изменения метаболизма скелетных мышц приводят к увеличению их чувствительности к инсулину [153]. BNP обладает самостоятельным гипогликемизирующим действием [111, 245]. Наконец, и ANP, и BNP посредством влияний на АТФ-зависимые калиевые каналы модулируют секрецию инсулина островковым аппаратом поджелудочной железы [259, 362].

Генно-модифицированные животные с избыточной экспрессией BNP мало подвержены алиментарному ожирению и инсулинорезистентности, но при этом у них усилено митохондриальное окисление жиров [200]. В ряде клинических (в том числе и проспективных) исследований было установлено, что относительно высокий уровень содержания в крови ANP/BNP означает меньший риск развития неблагоприятных форм ожирения, инсулинорезистентности и других проявлений метаболического синдрома, а также сахарного диабета [110, 174, 193, 218, 346].

Наконец, следует упомянуть, что натрийуретические пептиды существенно влияют на секрецию жировой тканью адипокинов (адипонектин, грелин) и иных цитокинов. Таким образом, они, вероятно, способны влиять на аппетит, оказывать цитопротективные эффекты (в сосудах, в печени), подавлять системное воспаление [207].

ANP и BNP в центральной нервной системе. ANP и его рецепторы (NPR-A и NPR-С) экспрессированы в нейронах и их отростках, в глиальных клетках гипоталамуса и гипофиза, в структурах мозга, окружающих четвертый желудочек, а также в обонятельной луковице, коре мозга, мозжечке и т. д. [70, 118, 186, 197]. Рецепторы NPR-С многочисленны в эндотелиоцитах микрососудов мозга, где обеспечивают сброс (с периодом полувыведения около 19 мин) натрийуретических пептидов (включая CNP) из мозга за пределы гематоэнцефалического барьера [139]. В гипоталамо-гипофизарных структурах ANP влияет на механизмы регуляции водно-солевого баланса и артериального давления. В гипоталамусе и гипофизе пептид препятствует высвобождению рилизинг-факторов и ослабляет секрецию вазопрессина и кортикотропина [60, 85, 105, 215, 246, 357, 358], способствуя выведению воды и натрия. ANP стимулирует чувствительные к нему нейроны гипоталамуса, вызывая усиление секреции гипофизом окситоцина в кровь; который в свою очередь усиливает продукцию ANP миокардом предсердий, действуя посредством специфических рецепторов [105—107]. Кроме того, в гипоталамусе ANP ослабляет водный и солевой аппетит (выступая антагонистом по отношению к усиливающей его локальной ренин-ангиотензиновой системе гипоталамических нейронов зоны AV3V). Он активирует симпатоингибиторные нейроны в ядре одиночного пути и передней зоне подбугорья, ослабляя эфферентный симпатический тонус и снижая артериальное давление [98, 118, 152, 233, 335]. Паравентрикулярные образования, в которых богато представлен ANP, обеспечивают транспорт воды и электролитов, а также обмен информационными сигналами между пространствами системного кровообращения, цереброспинальной циркуляции посредством сигнальных молекул, к числу которых относятся и натрийуретические пептиды [94]. Предполагается, что ANP локального происхождения участвует в настройке этих гематоэнцефалических информационных каналов, регулирует транспорт воды через гематоэнцефалический барьер [44, 45]. Наконец, описаны нейропротективные эффекты ANP, проявляющиеся при ишемии, отеке, воспалении или токсическом повреждении мозга, а также влиянии на эмоционально-психическую деятельность и поведение [118, 315].

BNP, обнаруженный почти два десятилетия назад в ткани мозга и поэтому получивший название — «мозговой» [302], в качестве субстанции церебрального происхождения, едва ли играет существенную паракринную роль в мозге. Основаниями для этого сомнения являются отсутствие экспрессии BNP в мозговой ткани [40, 70, 118, 169] и очень низкие концентрации этого пептида в спинномозговой жидкости — достигающие лишь 1/60 от уровня концентрации ANP [4]. Обнаруживаемый в мозге BNP может иметь периферическое происхождение, проникать из крови через информационные шлюзы в гематоэнцефалическом барьере.

Впрочем, возможна локальная выработка BNP в специализированных образованиях мозга, например, в нейронах сетчатки. Это обеспечивает соответствующие аутокринные эффекты [2, 332]. И уж тем более не удивительно, что интрацеребровентрикулярное или локальное введение BNP (при существовании рецепторов NPR-A) может вызывать определенные влияния (адипсогенные, нейромодуляторные) [140, 215].

Долгосрочная роль ANP/BNPстала очевидной благодаря генно-инженерным опытам. Особи, наделенные «продвинутым» (дополнительно экспрессированным) геном, обеспечивающим поддержание в циркулирующей крови значительно повышенной концентрации ANP или BNP, «страдают» артериальной гипотензией [226, 299], сопровождающейся выраженным снижением общего периферического сопротивления при обычном сердечном выбросе и частоте ритма [299]. Наоборот, у гомозиготных особей с разрушенным геном и отсутствием ANP имеется выраженная гипертензия. У их гетерозиготных аналогов уровень циркулирующего в крови ANP и артериальное давление остаются в норме, однако при избытке натрия в пище у них развивается резкая систолическая гипертензия [145]. Разрушение же гена BNP[NPPB (–/–)], хотя и не приводит к гипертензии и гипертрофии сердца (этому препятствует присутствие доминирующего дублера — ANP), но все вызывает патологический мультифокальный фиброз желудочков сердца [314].

Более того, масштабные многоэтапные генетические обследования сотен тысяч людей, отражающих европейскую популяцию, позволяющие анализировать геном человека в целом, показали, что к числу важнейших детерминант уровня артериального давления (а именно, устранения его повышения за счет увеличения продукции ANP и BNP) относятся гены NPPA и NPPB, кодирующие синтез предшественников названных натрийуретических пептидов [138, 219].

К числу таких детерминант принадлежит также ген, кодирующий синтез клиренс-рецепторов натрийуретических пептидов NPRС [138]. Причем устранение (нокаут) этого гена приводит к ослаблению разрушения циркулирующих натрийуретических пептидов и понижению артериального давления [196]. Кроме того, аналогичная роль отмечена у гена фурина [93, 138], фермента, обеспечивающего конвертацию препропептидов — в их биологически активные продукты (BNP, CNP, ренин и т. д.) [216].

CNP — пептидный регулятор, оперирующий в системе кровообращения в тесной кооперации с эндотелиальным барьером сосудов и клетками крови и приспосабливающий структуру и функции органов кровообращения к химическим (включая воспалительные) и гемодинамическим условиям.

Образование CNP. Секреция пептида и ее стимулы. Синтез предшественника биологически активной субстанции пре-про-CNP кодируется геном NPPC (atrial natriuretic peptide precursor C), расположенным у человека во второй хромосоме. Ген экспрессирован и обеспечивает выработку пептида в сосудах (большей частью в эндотелиоцитах, но также в гладкомышечных клетках интимы, медии и собственных сосудах артерий), а также в мозге (включая его сосуды), в сердце (эндотелиоциты, фибробласты, кардиомиоциты) [68, 123, 228, 237], почках (клетки сосудов, клубочков и канальцевые эпителиоциты) [66, 307], в костно-хрящевой ткани (фибробласты, хондроциты), в клетках крови (моноциты и макрофаги) [38].

Секрецию в сосудистом русле (основное место выработки) активируют воспалительные цитокины (тумор-некротизирующий фактор, интерлейкин-1, трансформирующий фактор роста-β), бактериальные липосахариды, а также напряжение сдвига в сосуде и связанные с ним факторы — ацетилхолин и оксид азота [190, 305, 367]. Усиливают секрецию CNP и родственные натрийуретические пептиды, причем BNP в 20 раз большей степени, чем ANP [217], в то время, как сам CNP ослабляет их секрецию кардиомиоцитами [154, 326].

Концентрация CNP в крови, оттекающей от сердца, может быть значительно выше, чем в крови, протекающей в аорте. Это свидетельствует о возможности значительной интракардиальной секреции этого пептида, причем происходит она не столько в миоцитах, сколько в фибробластах, наряду с эндотелиоцитами сосудов сердца [73]. Поэтому влияния CNP сердечного происхождения реальны как в самом сердце, так и за его пределами [67, 148, 166, 228].

Концентрация CNP в плазме обычно составляет 1—6 пкмоль/л, т. е. примерно 1/3 от уровня ANP. CNP быстро метаболизируется — время полувыведения из плазмы составляет всего 2—3 мин [126]. В центральной нервной системе, особенно в гипофизе, концентрация CNP довольно высока. Она примерно в 100 выше, чем в ткани предсердия [228, 350].

Рецепторы.CNP располагает специфическими рецепторами двух типов. Основным сигнальным (эффекторным) считается рецептор натрийуретических пептидов типа В (NPR-B или GC-B), т. е. связанный с мембранной гуанилатциклазой-B. Функция этого рецептора заключается в детекции CNP на поверхности рабочей клетки, переносе сигнала к гуанилатциклазе-В, что обеспечивает активацию связанного с нею пути метаболизма и в конечном счете вызывает специфические биологические эффекты [261, 287].

Второй рецептор CNP — NPR-C не имеет отношения к гуанилатциклазе. Он обеспечивает деградацию (клиренс) всех трех натрийуретических пептидов. Кроме того, благодаря связи с ингибиторным протеином G (Gi) под действием CNP происходят подавление аденилатциклазы, активирование фосфолипазы-С и связанные с ними биологические эффекты [261, 271, 329].

Кардиотропные влияния. В миокарде экспрессированы как рецепторы NPR-B, так и рецепторы NPR-С, причем оба типа рецепторов опосредуют влияния СNP на пейсмейкерную, систолическую и диастолическую функции сердца.

CNP обладает положительным лузитропным влиянием. Воздействие CNP на рецепторы NPR-B в изолированных перфузируемых сердцах сопровождается ГМФ-зависимым увеличением скорости и продолжительности расслабления миокарда, причем это происходит на фоне усиления фосфорилирования фосфаламбана и активирования кальциевого насоса саркоплазматического ретикулюма [35, 203, 244, 355].

Инотропные влияния CNP амбивалентны, они опосредованы разными рецепторами, разнообразием пострецепторной компартментации, кроме того, зависят от состояния миокарда (например, наличия гипертрофии) [202]. Поэтому в изолированных препаратах миокарда проявляются как положительные, так и отрицательные цГМФ-зависимые воздействия CNP на сократимость, опосредованные рецепторами NPR-B [35, 116, 222, 366]. Влияние CNP на сократимость миокарда посредством этих рецепторов двухфазное. Вначале происходит стимуляция, вероятно, вследствие опосредованного цГМФ ингибирования фосфодиэстераз[181, 351]. Затем сократимость подавляется [244] в силу селективного блокирования кальциевых каналов L-типа и снижения чувствительности миофиламентов к кальцию [203, 222, 261]. Кроме того, ослабление сократимости может зависеть от воздействия CNP на ингибиторный протеин Gi посредством рецепторов NPR-C, выражающемся в подавлении аденилатциклазы [261].

Введение CNP немного увеличивает частоту синусового ритма в изолированном сердце [24, 116, 297], а также скорость синоатриального проведения. Это может происходить как за счет воздействия на рецепторы NPR-B, т. е. гуанилатциклазного механизма [261], так и (особенно при бета-адреностимуляции) посредством рецепторов NPR-C, Gi-протеина, связанного с этим подавления фосфодиэстеразы-3 и блокирования кальциевых L-каналов [19, 261, 297].

Вазотропные эффекты. CNP вызывает дилатацию артерий и вен, действуя посредством рецепторов обоих типов (NPR-B и NPR-С) и используя для этого разные пути, в том числе отличные от тех, что присущи ANP/BNP, в частности стимуляцию синтеза оксида азота [12, 214].

Рецепторы NPR-B представлены преимущественно в венах, где CNP проявляет более выраженную способность к релаксации [180], но также в артериях, большей частью магистральных, и в аорте. Воздействие CNP на рецепторы этого типа приводит к усиленному образованию цГМФ, а также к раскрытию в активируемых кальцием калиевых каналах (BKCa) [20, 96].

В резистивных артериях (включая коронарные) CNP реализует эффекты эндотелиального гиперполяризующего фактора (EDHF) [50, 261, 339]. В частности, в пенильной ткани это проявляется релаксацией, что позволяет рассматривать CNP в качестве одного из медиаторов эрекции [165].

Проницаемость. CNP участвует в регуляции микрососудистой проницаемости, в том числе почечных клубочков и гематоэнцефалического барьера, увеличивая ее за счет модификации структуры гликокаликса эндотелиоцитов, даже при физиологических концентрациях в крови [42, 30, 144].

Почки. CNP, в отличие от ANP и BNP, лишь умеренно стимулирует диурез [51].При внутривенном введении здоровым людям он оказывается в этом отношении примерно в 10 раз слабее, чем ANP [133]. Более того, у натрийуретического пептида С-типа может отсутствовать влияние на экскрецию натрия или даже натрийзадерживающее действие [300]. Вероятно, CNP способен регулировать проницаемость почечных клубочков, влияя на состояние эндотелиоцитов и подоцитов [42, 182]. Считается также, что он защищает почки от воспаления и ослабляет реакции на него, подавляя клеточную пролиферацию и фиброз [268]. CNP участвует его в функциональной и структурной перестройке почек при развитии кардиоренального синдрома, сердечной и почечной недостаточности [364, 365].

CNP препятствует патологическому ремоделированию сердца и сосудов.CNP является сильным антагонистом фиброза [254, 269, 294]. В основе этого эффекта лежит его способность посредством рецепторов NPR-C и фосфолипазы C активировать неселективный транспорт катионов сквозь TRP-каналы, что приводит к подавлению пролиферации фибробластов миокарда [261], уменьшению выработки моноцитарного хемоаттрактанта и ингибитора активатора плазминогена, ослаблению дифференцировки и миграции фибробластов [184]. Кроме того, посредством цГМФ-зависимого механизма CNP подавляет интерстициальный фиброз и экспрессию генов коллагенов I и III типов [143], а также — индуцированную эндотелином-1 гипертрофию кардиомиоцитов [326]. В изолированных сосудах CNP вызывает подавление пролиферации и гипертрофии гладкомышечных клеток [92, 326].

Защитная роль CNP при атеротромбозе. В экспериментальных исследованиях у CNP был выявлен ряд полезных свойств, означающих способность противостоять развитию типичных процессов повреждения в системе кровообращения — атеросклероза и тромбоза. CNP уменьшает экспрессию молекулярных факторов адгезии (MCP-1, P-селектин), участвующих в лейкоцитарной инфильтрации атеросклеротических бляшек [282, 330], подавляет в них пролиферацию гладкомышечных клеток [134, 160, 334].

Отмечена гиперпродукция CNP у больных стенокардией Принцметала, что, вероятно, свидетельствует о защитной роли этого пептида по отношению к вазоспазму, возникающему при формирующемся атеросклерозе [176]. CNP обладает и антитромботическими свойствами: уменьшает аггрегацию лейко- и тромбоцитов, подавляет ингибитор активатора плазминогена (PAI-1) [33, 147, 361]. Отмечено защитное влияние CNP на миокард при экспериментальной ишемии и реперфузии за счет стабилизации коронарного кровотока [117].

Роль CNP в формировании скелета и кальцификации сердца и сосудов. CNP участвует в росте костей [337], поддержании структурного гомеостаза костно-хрящевой ткани, эндохондриального роста кости и защите хряща от воспаления [341, 360]. Наряду с этим отмечено, что он может предотвращать патологическую кальцификацию тканей сердца и сосудов благодаря опосредованному цГМФ подавлению экспрессии остеопонтина и других промоутеров кальцификации [53, 328].

Долгосрочная интегральная роль CNP. До недавнего времени CNP в основном отводилась физиологическая роль пара- и аутокринного регулятора, поскольку его концентрация в плазме обычно довольно низкая, и он быстро выводится из кровеносного русла [190, 301], так что вопрос об эндокринных свойствах системы CNP всерьез не ставился.

Тем временем о важном системном значении данного пептидного регулятора свидетельствуют выполненные недавно генно-инженерные опыты с изъятием гена NPPC. Они показали, что отсутствие CNP в организме приводит к эндотелиальной дисфункции, гипертензии, атерогенезу и образованию артериальных аневризм [208], а также к развитию фиброза и ремоделирования предсердий и дисфункции синусового узла со склонностью к развитию фибрилляции предсердий [78]. Кроме того, популяционное проспективное исследование показало, что верхний квартиль концентрации CNP в циркулирующей крови ассоциирован с повышенным риском возникновения инфаркта миокарда [270]. Таким образом, CNP является важным кратко- и долгосрочным регулятором структурно-функциональной интегральности сосудов.

Мозг. Из натрийуретических пептидов CNP в мозге представлен в наибольшей степени: в спинномозговой жидкости его концентрация примерно на порядок больше, чем ANP и тем более BNP [149]. С количественной точки зрения CNP — гораздо более «цереброгенный» пептид, нежели «кардиогенный». В ткани мозга его содержится больше почти в 100 раз, чем в предсердной ткани, и в 1000 раз больше, чем в ткани желудочков сердца [228, 332, 350]. Рецепторы CNP экспрессированы в коре, лимбической зоне, преоптико-гипоталамической области, гипофизе, моторных ядрах, в стволе мозга [3, 112, 169]. Все это свидетельствует об активном участии СNP в жизнедеятельности мозга.

СNP влияет на рост клеток мозга. Он стимулирует развитие и ветвление нейрональных аксонов и их cинапсов [22, 157, 275, 317, 368], что имеет отношение к когнитивным функциям, памяти [69], но в то же время подавляет рост астроглии [179]. Этот пептид участвует в регуляции проницаемости гематоэнцефалического барьера, состоящего из эндотелиальных клеток и астроцитов — увеличивает ее, снижая выработку белка плотного соединения зоны окклюзии (ZO-1) [30].

CNP ограничивает продукцию гипофизарных гормонов — АКТГ, вазопрессина и окситоцина [102, 260, 290, 358], что сопровождается снижением секреции надпочечниками кортизола и альдостерона [47]. В частности, действуя локально посредством рецепторов NPRB, CNP подавляет секрецию вазопрессина супраоптическим ядром гипоталамуса — базальную (на 2—3 порядка в большей степени, чем ANP или BNP) и стимулированную ангиотензином-II (менее интенсивно). Это позволяет признать за CNP возможность играть роль в регуляции центральной нервной системой водно-электролитного гомеостаза [358].

Установлено, что CNP имеет отношение к регуляции эмоционального состояния [118], пищевого поведения, влечения к алкоголю и наркотикам [146, 258].

Семейство ANP, BNP и CNP: распределение ключевых ролей в системе (вместо заключения). У натрийуретических пептидов имеется немало общих свойств. Значительным сходством обладает их молекулярная структура. Хотя места продукции ANP, BNP и CNP различаются, и это детерминировано генетически, основные стимулы к их секреции (по меньшей мере в сердце) довольно схожи. Кроме того, натрийуретические пептиды влияют на секрецию друг друга. Процессинг пре-про-пептидов, приводящий к образованию биологически активных молекул, отчасти обеспечивается общими механизмами. Взаимозависим и их клиренс: внутриклеточная деградация самостоятельных молекул инициируется общим клиренс-рецептором (NPR-C), экстрацеллюлярное разрушение зависит от общего фермента (нейтральная эндопептидаза, НЭП, NEP).

Общей чертой семейства натрийуретических пептидов является готовность противостоять гиперактивности нейрогуморальных систем, активирующих систему кровообращения. Ключевая роль тандема ANP/BNP — обеспечение системной реакции сердечно-сосудистой системы на перегрузки сердца давлением и объемом. Эти пептиды настраивают энергетический гомеостаз организма и препятствуют метаболическим повреждениям. Специализация CNP — защита сосудов от гемодинамического повреждения и от сосудистого воспаления. Наконец, следует отметить, что все натрийуретические пептиды обладают значительным влиянием на макро- и микроструктуру сердца и сосудов, приспосабливая ее к условиям функционирования системы кровообращения. ANP, BNP и CNP играют в организме (включая центральную нервную систему) неотъемлемые приспособительные и защитные биологические роли. Если они не выполняются, то развиваются заболевания.

Настоящий обзор был сфокусирован на обделенной вниманием теме — анализе и обобщении многочисленной разрозненной информации об основных (хотя и не всех известных) физиологических свойствах натрийуретических пептидов. И все же, каковы перспективы использования знаний о натрийуретических пептидах в клинической медицине?

Важное диагноcтическое значение подобных молекул уже признано. Насущной реальностью стало тестирование в плазме крови концентраций натрийуретических пептидов (особенно стабильного фрагмента предшественника относительно долго живущего BNP — NT-pro-BNP). Сведения об этом обобщены в обзорах и руководстве для врачей [256, 324].

Выгодные протективные свойства натрийуретических пептидов, искомые при многих патологических ситуациях, активно изучаются в экспериментальных и клинических условиях, опубликованы крупные анализы современного состояния этой проблемы [153, 194, 343] (рис. 2).

Рис. 2. Участие натрийуретических пептидов в патогенезе cердечной недостаточности и применимости для ее лечения препарата сакубитрил+валсартан (LCZ696), одновременно блокирующего нейтральную эндопептидазу и рецепторы к ангиотензину-II.

В лечении наибольший прогресс сегодня достигнут в направлении хронической сердечной недостаточности[344]. Для получения желаемых терапевтических эффектов за счет стойкого повышения концентрации натрийуретических пептидов в плазме крови разработан и уже успешно апробирован в масштабном клиническом испытании (PARADIGM-HF) пероральный лекарственный препарат LCZ696. Он представляет собой надмолекулярный комплекс валсартана и сакубитрила — блокатора нейтральной эндопептидазы (НЭП) и обеспечивает устойчивое повышение концентраций натрийуретических пептидов в крови (благодаря предотвращению их разрушения). В названном исследовании были доказаны клинические преимущества нового лекарства – он улучшает течение сердечной недостаточности и выживаемость больных [236]. Новые экспериментальные исследования свидетельствуют о возможности вызвать регрессию патоморфологических расстройств, свойственных хронической сердечной недостаточности благодаря применению этого нового терапевтического подхода [304].

Конфликт интересов отсутствует.

Литература / References:

  1. Aalkjaer C, Mulvany MJ, Nyborg NC. Atrial natriuretic factor causes specific relaxation of rat renal arcuate arteries. Br J Pharmacol. 1985;86(2) 447-453.
  2. Abdelalim EM, Takada T, Torii R, Tooyama I. Molecular cloning of BNP from heart and its immunohistochemical localization in the hypothalamus of monkey. Peptides. 2006;27(7):1886-1893. doi: 10.1016/j.peptides.2006.01.001
  3. Abdelalim EM, Masuda C, Bellier JP, Saito A, Yamamoto S, Mori N, Tooyama I. Distribution of natriuretic peptide receptor-C immunoreactivity in the rat brainstem and its relationship to cholinergic and catecholaminergic neurons. Neuroscience. 2008;155(1):192-202.doi: 10.1016/j.neuroscience.2008.05.020
  4. Aburaya M, Suzuki E, Minamino N, Kangawa K, Tanaka K, Matsuo H. Concentration and molecular forms of brain natriuretic peptide in rat plasma and spinal cord. Biochem Biophys Res Commun. 1991;177(1):40-47.
  5. Ackermann U, Khanna J, Irizawa TG. Atrial natriuretic factor alters autonomic interactions in the control of heart rate in conscious rats. Can J Physiol Pharmacol. 1988;66(7):930-936.
  6. Alexander MR, Knowles JW, Nishikimi T, Maeda N. Increased atherosclerosis and smooth muscle cell hypertrophy in natriuretic peptide receptor A–/–apolipoprotein E–/– mice. Arterioscler Thromb Vasc Biol. 2003;23(6):1077-1082.doi: 10.1161/01.ATV.0000071702.45741.2E
  7. Allen DE, Gellai M. Cardioinhibitory effect of atrial peptide in conscious rats. Am J Physiol. 1987;252(3 Pt 2):R610-R616.
  8. Allen MJ, Gilmour SM, Singer M, Bennett ED. Effects of atrial natriuretic peptide on systemic haemodynamics and cardiac function in normal man. Cardiovasc Res. 1989;23(1):70-75.
  9. Almeida FA, Suzuki M, Maack T. Atrial natriuretic factor increases hematocrit and decreases plasma volume in nephrectomized rats. Life Sci. 1986;39(13):1193-1199.
  10. Al-Obaidi M, Whitaker EM, Karim F. The effect of discrete stimulation of carotid body chemoreceptors on atrial natriuretic peptide in anaesthetized dogs. J Physiol. 1991;443:519-531.
  11. Ando S, Imaizumi T, Harada S, Hirooka Y, Takeshita A. Atrial natriuretic peptide increases human capillary filtration and venous distensibility. J Hypertens. 1992;10(5):451-457.
  12. Andrade FA, Restini CB, Grando MD, Ramalho LN, Bendhack  LM.Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway. PLoS One. 2014;­9(5):e95446. doi:10.1371/journal.pone.0095446
  13. Anker SD, Ponikowski P, Mitrovic V, Peacock WF, Filippatos G. Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. Eur Heart J. 2015;36(12):715-723. doi: 10.1093/eurheartj/ehu484
  14. Appel RG, Wang J, Simonson MS, Dunn MJ. A mechanism by which atrial natriuretic factor mediates its glomerular actions. Am J Physiol. 1986;251(6 Pt 2):F1036-F1042.
  15. Arjamaa O, Nikinmaa M. Hypoxia regulates the natriuretic peptide system. Int J Physiol Pathophysiol Pharmacol. 2011;3(3):191-201.
  16. Armaly Z, Assady S, Abassi Z. Corin: a new player in the regulation of salt-water balance and blood pressure. Curr Opin Nephrol Hypertens. 2013;22(6):713-722. doi: 10.1097/01.mnh.0000435609.35789.32
  17. Atarashi K, Mulrow PJ, Franco-Saenz R. Effect of atrial peptides on aldosterone production. J Clin Invest. 1985;76(5):1807-1811. doi: 10.1172/JCI112172
  18. Azer J, Hua R, Vella K, Rose RA. Natriuretic peptides regulate heart rate and sinoatrial node function by activating multiple natriuretic peptide receptors. J Mol Cell Cardiol. 2012;53(5):715-724. doi: 10.1016/j.yjmcc.2012.08.020
  19. Azer J, Hua R, Krishnaswamy PS, Rose RA. Effects of natriuretic peptides on electrical conduction in the sinoatrial node and atrial myocardium of the heart. J Physiol. 2014;592(Pt 5):1025-1045. doi: 10.1113/jphysiol.2013.265405
  20. Banks M, Wei CM, Kim CH, Burnett JC, Miller VM. Mechanism of relaxations to C-type natriuretic peptide in veins. Am J Physiol. 1996;271(5 Pt 2):H1907-H1911.
  21. Barasch E, Gottdiener JS, Aurigemma G, Kitzman DW, Han J, Kop WJ, Tracy RP. Association between elevated fibrosis markers and heart failure in the elderly: the cardiovascular health study. Circ Heart Fail. 2009;2(4):303-310. doi: 10.1161/CIRCHEARTFAILURE.108.828343
  22. Barmashenko G, Buttgereit J, Herring N, Bader M, Ozcelik C, Manahan-Vaughan D, Braunewell KH. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats. Front Mol Neurosci. 2014;7:95.eCollection.
  23. Bauer WR, Neubauer S, Obitz G, Ertl G. Interrelation of coronary effects of atrial natriuretic peptide and the renin-angiotensin system in the isolated perfused rat heart. J  Mol Cell Cardiol 1994;26(4):527-537. doi: 10.1006/jmcc.1994.1063
  24. Beaulieu P, Cardinal R, De Léan A, Lambert C. Direct chronotropic effects of atrial and C-type natriuretic peptides in anaesthetized dogs. Br J Pharmacol. 1996;118(7):1790-1796.
  25. Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015;80(3):389-402. doi: 10.1111/bcp.12629
  26. Bełtowski J, Wójcicka G. Regulation of renal tubular sodium transport by cardiac natriuretic peptides: two decades of research. Med Sci Monit. 2002;8(2):RA39-RA52.
  27. Bergey JL, Kotler D. Effects of atriopeptins I, II and III on atrial contractility, sinus nodal rate (guinea pig) and agonist-induced tension in rabbit aortic strips. Eur J Pharmacol. 1985;110(2):277-281.
  28. Bialik GM, Abassi ZA, Hammel I, Winaver J, Lewinson D. Evaluation of atrial natriuretic peptide and brain natriuretic peptide in atrial granules of rats with experimental congestive heart failure. J Histochem Cytochem. 2001;49(10):1293-1300.
  29. Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Franke G, Berlan M, Luft FC, Lafontan M, Jordan J. Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J Clin Endocrinol Metab. 2005;90(6):3622-3628. doi: 10.1210/jc.2004-1953
  30. Bohara M, Kambe Y, Nagayama T, Tokimura H, Arita K, Miyata  A. C-type natriuretic peptide modulates permeability of the blood-brain barrier. J Cereb Blood Flow Metab. 2014;34(4):589-596. doi: 10.1038/jcbfm.2013.234
  31. Bolli P, Müller FB, Linder L, Raine AE, Resink TJ, Erne P, Kiowski W, Ritz R, Bühler FR. The vasodilator potency of atrial natriuretic peptide in man. Circulation. 1987;75(1):221-228.
  32. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessì-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022-1036. doi: 10.1172/JCI59701
  33. Bouchie JL, Hansen H, Feener EP. Natriuretic factors and nitric oxide suppress plasminogen activator inhibitor-1 expression in vascular smooth muscle cells. Role of cGMP in the regulation of the plasminogen system. Arterioscler Thromb Vasc Biol. 1998;18(11):1771-1779.
  34. Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P, Becker BF. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol. 2005;289(5):H1993-H1999.doi: 10.1152/ajpheart.00218.2005
  35. Brusq JM, Mayoux E, Guigui L, Kirilovsky J. Effects of C-type natriuretic peptide on rat cardiac contractility. Br J Pharmacol. 1999;128(1):206-212. doi: 10.1038/sj.bjp.0702766
  36. Bruun NE, Skøtt P, Giese J. Renal and endocrine effects of physiological variations of atrial natriuretic factor in normal humans. Am J Physiol. 1991;260(1 Pt 2):R217-R224.
  37. Burnett JC, Granger JP. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol. 1984;247(5 Pt 2):F863-F686.
  38. Cabiati M, Sabatino L, Caruso R, Caselli C, Prescimone T, Giannessi D, Del Ry S. Gene expression of C-type natriuretic peptide and of its specific receptor NPR-B in human leukocytes of healthy and heart failure subjects. Peptides. 2012;37(2):240-246. doi: 10.1016/j.peptides.2012.07.026
  39. Calderone A, Bel-Hadj S, Drapeau J, El-Helou V, Gosselin H, Clement R, Villeneuve L. Scar myofibroblasts of the infarcted rat heart express natriuretic peptides. J Cell Physiol. 2006;207(1):165-713. doi: 10.1002/jcp.20548
  40. Cameron VA, Aitken GD, Ellmers LJ, Kennedy MA, Espiner EA. The sites of gene expression of atrial, brain, and C-type natriuretic peptides in mouse fetal development: temporal changes in embryos and placenta. Endocrinology. 1996;137(3):817-824. doi: 10.1210/endo.137.3.8603590
  41. Cargill RI, Struthers AD, Lipworth BJ. Comparative effects of atrial natriuretic peptide and brain natriuretic peptide on the aldosterone and pressor responses to angiotensin II in man. Clin Sci. (Lond). 1995;88(1):81-86.
  42. Cataliotti A, Giordano M, De Pascale E, Giordano G, Castellino P, Jougasaki M, Costello LC, Boerrigter G, Tsuruda T, Belluardo P, Lee SC, Huntley B. CNP production in the kidney and effects of protein intake restriction in nephrotic syndrome. Am J Physiol Renal Physiol. 2002;283(3):F464-F472. doi :10.1152/ajprenal.00372.2001
  43. Cha SA, Park BM, Gao S, Kim SH. Stimulation of ANP by angiotensin-(1—9) via the angiotensin type 2 receptor. Life Sci. 2013;93(24):934-940. doi: 10.1016/j.lfs.2013.10.020
  44. Chabrier PE, Roubert P, Braquet P. Specific binding of atrial natriuretic factor in brain microvessels. Proc Natl Acad Sci USA. 1987;84(7):2078-2081.
  45. Chabrier PE, Roubert P, Plas P, Braquet P. Blood-brain barrier and atrial natriuretic factor. Can J Physiol Pharmacol. 1988;66(3):276-279.
  46. Chappell D, Bruegger D, Potzel J, Jacob M, Brettner F, Vogeser M, Conzen P, Becker BF, Rehm M. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18(5):538. doi: 10.1186/s13054-014-0538-5
  47. Charles CJ, Richards AM, Espiner EA. Central C-type natriuretic peptide but not atrial natriuretic factor lowers blood pressure and adrenocortical secretion in normal conscious sheep. Endocrinology. 1992;131(4):1721-1726.
  48. Charles CJ, Espiner EA, Richards AM, Nicholls MG, Yandle TG. Comparative bioactivity of atrial, brain, and C-type natriuretic peptides in conscious sheep. Am J Physiol. 1996;270(6 Pt 2):R1324-R1331.
  49. Chartier L, Schiffrin EL. Role of calcium in effects of atrial natriuretic peptide on aldosterone production in adrenal glomerulosa cells. Am J Physiol. 1987;252(4 Pt 1):E485-E491.
  50. Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ. Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci USA. 2003;100(3):1426-1431. doi: 10.1073/pnas.0336365100
  51. Chen HH, Burnett JC. C-type natriuretic peptide: the endothelial component of the natriuretic peptide system. J Cardiovasc Pharmacol. 1998;32:Suppl. 3:S22-S28.
  52. Chen HH, Cataliotti A, Schirger JA, Martin FL, Burnett JC. Equimolar doses of atrial and brain natriuretic peptides and urodilatin have differential renal actions in overt experimental heart failure. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1093-R1097.doi: 10.1152/ajpregu.00682.2004
  53. Chen JJ, Zhang J, Cai Y, Zhou YB, Wen GB, Tang CS, Qi YF, Jiang ZS. C-type natriuretic peptide inhibiting vascular calcification might involve decreasing bone morphogenic protein 2 and osteopontin levels. Mol Cell Biochem. 2014;392(1-2):65-76. doi: 10.1007/s11010-14-2019-1
  54. Chen YF. Atrial natriuretic peptide in hypoxia. Peptides. 2005;26(6):1068-1077.doi: 10.1016/j.peptides.2004.08.030
  55. Chien YW, Frohlich ED, Trippodo NC. Atrial natriuretic peptide increases resistance to venous return in rats. Am J Physiol. 1987;252(5 Pt 2):H894-H899.
  56. Chien Y, Pegram BL, Kardon MB, Frohlich ED. ANF does not increase total body venous compliance in conscious rats with myocardial infarction. Am J Physiol. 1992;262(2 Pt 2):H432-H436.
  57. Chu A, Morris KG, Kuehl WD, Cusma J, Navetta F, Cobb FR. Effects of atrial natriuretic peptide on the coronary arterial vasculature in humans. Circulation. 1989;80(6):1627-1635.
  58. Clerico A, Recchia FA, Passino C, Emdin M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol. 2006;290(1):H17-H29.doi: 10.1152/ajpheart.00684.2005
  59. Cogan MG. Atrial natriuretic factor can increase renal solute excretion primarily by raising glomerular filtration. Am J Physiol. 1986;250(4 Pt 2):F710-F714.
  60. Crandall ME, Gregg CM. In vitro evidence for an inhibitory effect of atrial natriuretic peptide on vasopressin release. Neuroendocrinology. 1986;44(4):439-445.
  61. Curry FR, Rygh CB, Karlsen T, Wiig H, Adamson RH, Clark JF, Lin YC, Gassner B, Thorsen F, Moen I, Tenstad O, Kuhn M, Reed RK. Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume. J Physiol. 2010;588(Pt 2):325-339. doi :10.1113/jphysiol.2009.180463
  62. De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981;28(1):89-94.
  63. De Bold AJ, Flynn TG. Cardionatrin I - a novel heart peptide with potent diuretic and natriuretic properties. Life Sci. 1983;33(3):97-100.
  64. De Léan A, Racz K, Gutkowska J, Nguyen TT, Cantin M, Genest J. Specific receptor-mediated inhibition by synthetic atrial natriuretic factor of hormone-stimulated steroidogenesis in cultured bovine adrenal cells. Endocrinology. 1984;115(4):1636-163, 168.doi :10.1210/endo-115-4-1636
  65. De Wardener HE, Mills IH, Clapham WF. Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci 1961;21:249-625.
  66. Dean AD, Vehaskari VM, Greenwald JE. Synthesis and localization of C-type natriuretic peptide in mammalian kidney. Am J Physiol. 1994;266(3 Pt 2):F491-F496.
  67. Del Ry S, Passino C, Emdin M, Giannessi D. C-type natriuretic peptide and heart failure. Pharmacol Res. 2006;54(5):326-333. doi: 10.1016/j.phrs.2006.06.011
  68. Del Ry S, Cabiati M, Vozzi F, Battolla B, Caselli C, Forini F, Segnani C, Prescimone T, Giannessi D, Mattii L. Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides. 2011;32(8):1713-1718. doi: 10.1016/j.peptides.2011.06.014
  69. Deschatrettes E, Jouvert P, Zwiller J. Overexpression of cyclic GMP-dependent protein kinase reduces MeCP2 and HDAC2 expression. Brain Behav. 2012;2(6):732-740.doi: 10.1002/brb3.92
  70. DiCicco-Bloom E, Lelièvre V, Zhou X, Rodriguez W, Tam J, Waschek JA. Embryonic expression and multifunctional actions of the natriuretic peptides and receptors in the developing nervous system. Dev Biol. 2004;271(1):161-175. doi: 10.1016/j.ydbio.2004.03.028
  71. Dickey DM, Potter LR. Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. J Mol Cell Cardiol. 2011;51(1):67-71. doi: 10.1016/j.yjmcc.2011.03.013
  72. Doorenbos CJ, Blauw GJ, van Brummelen P. Arterial and venous effects of atrial natriuretic peptide in the human forearm. Am J Hypertens. 1991;4(4 Pt 1):333-340.
  73. Doyle DD, Upshaw-Earley J, Bell EL, Palfrey HC. Natriuretic peptide receptor-B in adult rat ventricle is predominantly confined to the nonmyocyte population. Am J Physiol Heart Circ Physiol. 2002;282(6):H2117-H2123. doi: 10.1152/ajpheart.00988.2001
  74. Drexler H, Zeiher AM, Holtz J, Meinertz T, Just H. Effect of atrial natriuretic factor on coronary vascular tone. Z Kardiol. 1990;79(9):621-627.
  75. Dubois-Rande JL, Adnot S, Benvenuti C, Merlet P, Hittinger L, Sediame S, Chabrier E, Braquet P, Castaigne A. Hemodynamic response to intracoronary infusion of atrial natriuretic factor in patients with normal or altered left ventricular function. J Cardiovasc Pharmacol. 1991;17(4):608-614.
  76. Dunn BR, Ichikawa I, Pfeffer JM, Troy JL, Brenner BM. Renal and systemic hemodynamic effects of synthetic atrial natriuretic peptide in the anesthetized rat. Circ Res. 1986;59(3):237-246.
  77. Ebert TJ, Cowley AW. Atrial natriuretic factor attenuates carotid baroreflex-mediated cardioacceleration in humans. Am J Physiol. 1988;254(4 Pt 2):R590-R594.
  78. Egom EE, Vella K, Hua R, Jansen HJ, Moghtadaei M, Polina I, Bogachev O, Hurnik R, Mackasey M, Rafferty S, Ray G, Rose RA. Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol. 2015;593(5):1127-1146. doi: 10.1113/jphysiol.2014.283135
  79. Ehara S, Nakamura Y, Matsumoto K, Hasegawa T, Shimada K, Takagi M, Hanatani A, Izumi Y, Terashima M, Yoshiyama M. Effects of intravenous atrial natriuretic peptide and nitroglycerin on coronary vasodilation and flow velocity determined using 3 T magnetic resonance imaging in patients with nonischemic heart failure. Heart Vessels. 2013;28(5):596-605.doi: 10.1007/s00380-012-0292-z
  80. Eiskjaer H, Nielsen CB, Sørensen SS, Pedersen EB. Renal and hormonal actions of atrial natriuretic peptide during angiotensin II or noradrenaline infusion in man. Eur J Clin Invest. 1996;26(7):584-595.
  81. Engeli S, Birkenfeld AL, Badin PM, Bourlier V, Louche K, Viguerie N, Thalamas C, Montastier E, Larrouy D, Harant I, de Glisezinski I, Lieske S, Reinke J, Beckmann B, Langin D, Jordan J, Moro C. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest. 2012;122(12):4675-4679. doi: 10.1172/JCI64526
  82. Erdos EG, Skidgel RA. Neutral endopeptidase 24.11. (enkephalinase) and related regulators of peptide hormones. FASEB J. 1989;3(2):145-151.
  83. Feiteiro J, Santos-Silva AJ, Verde I, Cairrão E. Testosterone and atrial natriuretic peptide share the same pathway to induce vasorelaxation of human umbilical artery. J Cardiovasc Pharmacol. 2014;63(5):461-465. doi: 10.1097/FJC.0000000000000060
  84. Ferrari AU, Daffonchio A, Cavallazzi A, Gerosa S, Napoletano G, Mancia G. Effect of atrial natriuretic factor on arterial baroreceptor control of heart rate and blood pressure in conscious rats. J Hypertens Suppl. 1988;6(4):S284-S286.
  85. Fink G, Dow RC, Casley D, Johnston CI, Lim AT, Copolov DL, Bennie J, Carroll S, Dick H. Atrial natriuretic peptide is a physiological inhibitor of ACTH release: evidence from immunoneutralization in vivo. J Endocrinol. 1991;131(3):R9-R12.
  86. Floras JS. Sympathoinhibitory effects of atrial natriuretic factor in normal humans. Circulation. 1990;81(6):1860-1873.
  87. Florkowski CM, Richards AM, Espiner EA, Yandle TG, Frampton C. Renal, endocrine, and hemodynamic interactions of atrial and brain natriuretic peptides in normal men. Am J Physiol. 1994;266(4 Pt 2):R1244-R1250.
  88. Ford GA, Eichler HG, Hoffman BB, Blaschke TF. Venous responsiveness to atrial natriuretic factor in man. Br J Clin Pharmacol. 1988;26(6):797-799. 
  89. Fried TA, McCoy RN, Osgood RW, Stein JH. Effect of atriopeptin II on determinants of glomerular filtration rate in the in vitro perfused dog glomerulus. Am J Physiol. 1986;250(6 Pt 2):F1119-F1122.
  90. Fujita S, Shimojo N, Terasaki F, Otsuka K, Hosotani N, Kohda Y, Tanaka T, Nishioka T, Yoshida T, Hiroe M, Kitaura Y, Ishizaka N, Imanaka-Yoshida K. Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessels. 2013;28(5):646-657. doi: 10.1007/s00380-012-0311-0
  91. Fujita T, Ito Y, Noda H, Sato Y, Ando K, Kangawa K, Matsuo H.  Vasodilatory actions of alpha-human atrial natriuretic peptide and high Ca2+ effects in normal man. J Clin Invest. 1987;80(3):832-840. doi: 10.1172/JCI113141
  92. Furuya M, Yoshida M, Hayashi Y, Ohnuma N, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem Biophys Res Commun. 1991;177(3):927-931.
  93. Ganesh SK, Tragante V, Guo W, Guo Y, Lanktree MB, Smith EN, Johnson T, Castillo BA, Barnard J, Baumert J, Chang YP, Elbers CC, Farrall M, Fischer ME, Franceschini N, Gaunt TR, Gho JM, Gieger C, Gong Y, Isaacs A, et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum Mol Genet. 2013;22(8):1663-1678.
  94. Ganong WF. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol. 2000;27(5-6):422-427.
  95. Gao S, Park BM, Cha SA, Park WH, Park BH, Kim SH. Angiotensin AT2 receptor agonist stimulates high stretch induced-ANP secretion via I3K/NO/sGC/PKG/pathway. Peptides. 2013;47:36-44.doi: 10.1016/j.peptides.2013.06.008
  96. Garcha RS, Hughes AD. CNP, but not ANP or BNP, relax human isolated subcutaneous resistance arteries by an action involving cyclic GMP and BKCa channels. J Renin Angiotensin Aldosterone Syst. 2006;7(2):87-91. doi: 10.3317/jraas.2006.014
  97. Gardner DG, Vlasuk GP, Baxter JD, Fiddes JC, Lewicki JA. Identification of atrial natriuretic factor gene transcripts in the central nervous system of the rat. Proc Natl Acad Sci USA. 1987;84(8):2175-2179.
  98. Glass H, Gutkowska J, Favaretto AL, Antunes-Rodrigues J. Correlations between ANP concentrations in atria, plasma and cerebral structures and sodium chloride preference in Wistar rats. Braz J Med Biol Res. 1997;30(1):65-68.
  99. Goodfriend TL, Elliott ME, Atlas SA. Actions of synthetic atrial natriuretic factor on bovine adrenal glomerulosa. Life Sci. 1984;35(16):1675-1682.
  100. Goy MF, Oliver PM, Purdy KE, Knowles JW, Fox JE, Mohler PJ, Qian X, Smithies O, Maeda N. Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide. Biochem J. 2001;358(Pt 2):379-387.
  101. Groban L, Cowley AW, Ebert TJ. Atrial natriuretic peptide augments forearm capillary filtration in humans. Am J Physiol. 1990;259(1 Pt 2):H258-H263.
  102. Guild SB, Cramb G. Characterisation of the effects of natriuretic peptides upon ACTH secretion from the mouse pituitary. Mol Cell Endocrinol. 1999;152(1-2):11-19.
  103. Guo LJ, Alli AA, Eaton DC, Bao HF. ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling. Am J Physiol Renal Physiol. 2013;304(7):F930-F937.
  104. Guo S, Goetze JP, Jeppesen JL, Burnett JC, Olesen J, Jansen-Olesen I, Ashina M. Effect of natriuretic peptides on cerebral artery blood flow in healthy volunteers. Peptides. 2015;74:33-42.
  105. Gutkowska J, Antunes-Rodrigues J, McCann SM. Atrial natriuretic peptide in brain and pituitary gland. Physiol Rev. 1997;77(2):465-515.
  106. Gutkowska J, Jankowski M, Mukaddam-Daher S, McCann SM. Oxytocin is a cardiovascular hormone. Braz J Med Biol Res. 2000;33(6):625-633.
  107. Gutkowska J, Jankowski M, Antunes-Rodrigues J. The role of oxytocin in cardiovascular regulation. Braz J Med Biol Res. 2014;47(3):206-214. 
  108. Haloui M, Arnal JF, Pham I, Gonzalez W, Lyoussi B, Michel JB.  Functional compartmentation of the endocrine action of cardiac natriuretic peptides. Ann Endocrinol. 2000;61(1):32-40.
  109. Hasegawa K, Fujiwara H, Doyama K, Miyamae M, Fujiwara T, Suga S, Mukoyama M, Nakao K, Imura H, Sasayama S.  Ventricular expression of brain natriuretic peptide in hypertrophic cardiomyopathy. Circulation. 1993;88(2):372-380.
  110. He WT, Mori M, Yu XF, Kanda T. Higher BNP levels within physiological range correlate with beneficial nonfasting lipid profiles in the elderly: a cross-sectional study. Lipids Health Dis. 2016;15(1):3. 
  111. Heinisch BB, Vila G, Resl M, Riedl M, Dieplinger B, Mueller T, Luger A, Pacini G, Clodi M. B-type natriuretic peptide (BNP) affects the initial response to intravenous glucose: a randomised placebo-controlled cross-over study in healthy men. Diabetologia. 2012;55(5):1400-1405.
  112. Herman JP, Dolgas CM, Rucker D, Langub MC. Localization of natriuretic peptide-activated guanylate cyclase mRNAs in the rat brain. J Comp Neurol. 1996;369(2):165-187.
  113. Herring N, Zaman JA, Paterson DJ. Natriuretic peptides like NO facilitate cardiac vagal neurotransmission and bradycardia via a cGMP pathway. Am J Physiol Heart Circ Physiol. 2001;281(6):H2318-H2327.
  114. Herrmann HC, Rosenthal AD, Davis CA. Cardiovascular effects of intracoronary atrial natriuretic peptide administration in man. Am Heart J. 1990;120(2):308-315.
  115. Hirata Y, Ishii M, Sugimoto T, Matsuoka H, Sugimoto T, Kangawa K, Matsuo H. The effects of human atrial 28-amino acid peptide on systemic and renal hemodynamics in anesthetized rats. Circ Res. 1985;57(4):634-639.
  116. Hirose M, Furukawa Y, Kurogouchi F, Nakajima K, Miyashita Y, Chiba S. C-type natriuretic peptide increases myocardial contractility and sinus rate mediated by guanylyl cyclase-linked natriuretic peptide receptors in isolated, blood-perfused dog heart preparations. J Pharmacol Exp Ther. 1998;286(1):70-76.
  117. Hobbs A, Foster P, Prescott C, Scotland R, Ahluwalia A. Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury: novel cardioprotective role for endothelium-derived C-type natriuretic peptide. Circulation. 2004;110(10):1231-1235.
  118. Holmes SJ, Espiner EA, Richards AM, Yandle TG, Frampton C. Renal, endocrine, and hemodynamic effects of human brain natriuretic peptide in normal man. J Clin Endocrinol Metab. 1993;76(1):91-96.
  119. Holtwick R, Gotthardt M, Skryabin B, Steinmetz M, Potthast R, Zetsche B, Hammer RE, Herz J, Kuhn M. Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc Natl Acad Sci USA. 2002;99(10):7142-7147.
  120. Holtz J, Stewart DJ, Elsner D, Bassenge E. In vivo atrial peptide-venodilation: minimal potency relative to nitroglycerin in dogs. Life Sci. 1986;39(23):2177-2184.
  121. Horio T, Kohno M, Takeda T. Cosecretion of atrial and brain natriuretic peptides stimulated by endothelin-1 from cultured rat atrial and ventricular cardiocytes. Metabolism. 1993;42(1):94-96.
  122. Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, Kojima M, Kawano Y, Kangawa K. Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology. 2003;144(6):2279-2284.
  123. Huang H, John SW, Steinhelper ME. Organization of the mouse cardiac natriuretic peptide locus encoding BNP and ANP. J Mol Cell Cardiol. 1996;28(8):1823-1828.
  124. Hughes AD, Nielsen H, Sever PS. The effect of atrial natriuretic peptide on human isolated resistance arteries. Br J Pharmacol. 1989;97(4):1027-1030.
  125. Hunt PJ, Richards AM, Espiner EA, Nicholls MG, Yandle TG. Bioactivity and metabolism of C-type natriuretic peptide in normal man. J Clin Endocrinol Metab. 1994;78(6):1428-1435.
  126. Hunt PJ, Espiner EA, Richards AM, Yandle TG, Frampton C, Nicholls MG. Interactions of atrial and brain natriuretic peptides at pathophysiological levels in normal men. Am J Physiol. 1995;269(6 Pt 2): R1397-R1403.
  127. Hunt PJ, Espiner EA, Nicholls MG, Richards AM, Yandle TG. Differing biological effects of equimolar atrial and brain natriuretic peptide infusions in normal man. J Clin Endocrinol Metab. 1996;81(11):3871-3876.
  128. Hutchinson HG, Trindade PT, Cunanan DB, Wu CF, Pratt RE. Mechanisms of natriuretic peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res. 1997;35(1):158-167.
  129. Huxley VH, Tucker VL, Verburg KM, Freeman RH. Increased capillary hydraulic conductivity induced by atrial natriuretic peptide. Circ Res. 1987;60(2):304-307.
  130. Ichiki T, Boerrigter G, Huntley BK, Sangaralingham SJ, McKie PM, Harty GJ, Harders GE, Burnett JC. Differential expression of the pro-natriuretic peptide convertases corin and furin in experimental heart failure and atrial fibrosis. Am J Physiol Regul Integr Comp Physiol. 2013;304(2):R102-R109.
  131. Ichiki T, Huntley BK, Sangaralingham SJ, Burnett JC. Pro-Atrial Natriuretic Peptide: A Novel Guanylyl Cyclase-A Receptor Activator That Goes Beyond Atrial and B-Type Natriuretic Peptides. JACC Heart Fail. 2015;3(9):715-723.
  132. Igaki T, Itoh H, Suga SI, Hama N, Ogawa Y, Komatsu Y, Yamashita J, Doi K, Chun TH, Nakao K. Effects of intravenously administered C-type natriuretic peptide in humans: comparison with atrial natriuretic peptide. Hypertens Res. 1998;21(1):7-13.
  133. Ikeda M, Kohno M, Yasunari K, Yokokawa K, Horio T, Ueda M, Morisaki N, Yoshikawa J. Natriuretic peptide family as a novel antimigration factor of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997;17(4):731-736.
  134. Imaizumi T, Takeshita A, Higashi H, Nakamura M. Аlpha-ANP alters reflex control of lumbar and renal sympathetic nerve activity and heart rate. Am J Physiol. 1987;253(5 Pt 2):H1136-H1140.
  135. Imaizumi T, Takeshita A. Influence of ANP on sympathetic nerve activity and chronotropic regulation of the heart. J Cardiovasc Electrophysiol. 1993;4(6):719-729.
  136. Indolfi C, Piscione F, Volpe M, Focaccio A, Lembo G, Trimarco  B, Condorelli M, Chiariello M. Cardiac effects of atrial natriuretic peptide in subjects with normal left ventricular function. Am J Cardiol. 1989;63(5):353-357.
  137. International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103-109.
  138. Ito S, Ohtsuki S, Katsukura Y, Funaki M, Koitabashi Y, Sugino A, Murata S, Terasaki T. Atrial natriuretic peptide is eliminated from the brain by natriuretic peptide receptor-C-mediated brain-to-blood efflux transport at the blood-brain barrier. J Cereb Blood Flow Metab. 2011;31(2):457-466.
  139. Itoh H, Nakao K, Yamada T, Shirakami G, Kangawa K, Minamino N, Matsuo H, Imura H. Antidipsogenic action of a novel peptide, ‘brain natriuretic peptide’, in rats. Eur J Pharmacol. 1988;150(1-2):193-196.
  140. Itoh H, Pratt RE, Dzau VJ. Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest. 1990;86(5):1690-1697.
  141. Itoh H, Pratt RE, Ohno M, Dzau VJ. Atrial natriuretic polypeptide as a novel antigrowth factor of endothelial cells. Hypertension. 1992;19(6 Pt 2):758-761.
  142. Izumiya Y, Araki S, Usuku H, Rokutanda T, Hanatani S, Ogawa H. Chronic C-Type Natriuretic Peptide Infusion Attenuates Angiotensin II-Induced Myocardial Superoxide Production and Cardiac Remodeling. Int J Vasc Med. 2012.
  143. Jacob M, Saller T, Chappell D, Rehm M, Welsch U, Becker BF. Physiological levels of A-, B- and C-type natriuretic peptide shed the endothelial glycocalyx and enhance vascular permeability. Basic Res Cardiol. 2013;108(3):347.
  144. John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang  SC, Flynn TG, Smithies O. Genetic decreases in atrial natriuretic
  145. peptide and salt-sensitive hypertension. Science. 1995;­267(5198): ­­679-681.
  146. Jouvert P, Revel MO, Lazaris A, Aunis D, Langley K, Zwiller J. Activation of the cGMP pathway in dopaminergic structures reduces cocaine-induced EGR-1 expression and locomotor activity. J Neurosci. 2004;24(47):10716-19725.
  147. Kairuz EM, Barber MN, Anderson CR, Kanagasundaram M, Drummond GR, Woods RL. C-type natriuretic peptide (CNP) suppresses plasminogen activator inhibitor-1 (PAI-1) in vivo. Cardiovasc Res. 2005;66(3):574-582.
  148. Kalra PR, Clague JR, Bolger AP, Anker SD, Poole-Wilson PA, Struthers AD, Coats AJ. Myocardial production of C-type natriuretic peptide in chronic heart failure. Circulation. 2003;107(4):571-573.
  149. Kaneko T, Shirakami G, Nakao K, Nagata I, Nakagawa O, Hama N, Suga S, Miyamoto S, Kubo H, Hirai O. C-type natriuretic peptide (CNP) is the major natriuretic peptide in human cerebrospinal fluid. Brain Res. 1993;612(1-2):104-109. 
  150. Karaahmet T, Tigen K, Dundar C, Pala S, Guler A, Kilicgedik A, Cevik C, Mahmutyazicioglu K, Isiklar I, Basaran Y. The effect of cardiac fibrosis on left ventricular remodeling, diastolic function, and N-terminal pro-B-type natriuretic peptide levels in patients with nonischemic dilated cardiomyopathy. Echocardiography. 2010;27(8):954-960.
  151. Kasama S, Furuya M, Toyama T, Ichikawa S. Effect of atrial natriuretic peptide on left ventricular remodelling in patients with acute myocardial infarction. Eur Heart J. 2008;29 (12):1485-1494.
  152. Katsuura G, Nakamura M, Inouye K, Kono M, Nakao K, Imura H. Regulatory role of atrial natriuretic polypeptide in water drinking in rats. Eur J Pharmacol. 1986;121(2):285-287.
  153. Kerkelä R, Ulvila J, Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J Am Heart Assoc. 2015;4(10):e002423.
  154. Kim SH, Han JH, Lim SH, Lee SJ, Kim SZ, Cho KW. Attenuation of inhibitory effect of CNP on the secretion of ANP from hypertrophied atria. Am J Physiol Regul Integr Comp Physiol. 2001;281(5):R1456-R1463.
  155. Kisch B. Electron microscopy of the atrium of the heart. I. Guinea pig. Exp Med Surg. 1956;14(2-3):99-112.
  156. Kishimoto I, Dubois SK, Garbers DL. The heart communicates with the kidney exclusively through the guanylyl cyclase-A receptor: acute handling of sodium and water in response to volume expansion. Proc Natl Acad Sci USA. 1996;93(12):6215-6219.
  157. Kishimoto I, Tokudome T, Horio T, Soeki T, Chusho H, Nakao  K, Kangawa K. C-type natriuretic peptide is a Schwann cell-derived factor for development and function of sensory neurones. J Neuroendocrinol. 2008;20(11):1213-1223.
  158. Klinger JR, Warburton RR, Pietras L, Hill NS. Brain natriuretic peptide inhibits hypoxic pulmonary hypertension in rats. J Appl Physiol. 1998;84(5):1646-1652.
  159. Kohno M, Horio T, Yasunari K, Yokokawa K, Ikeda M, Kurihara N, Nishizawa Y, Morii H, Takeda T. Stimulation of brain natriuretic peptide release from the heart by thyroid hormone. Metabolism. 1993;42(8):1059-1064.
  160. Kohno M, Yokokawa K, Yasunari K, Kano H, Minami M, Ueda M, Yoshikawa J. Effect of natriuretic peptide family on the oxidized LDL-induced migration of human coronary artery smooth muscle cells. Circ Res. 1997;81(4):585-590.
  161. Kojima I, Kojima K, Rasmussen H. Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from adrenal glomerulosa cells. J Biol Chem. 1985;260(16):977-984.
  162. Koller KJ, Goeddel DV. Molecular biology of the natriuretic peptides and their receptors. Circulation. 1992;86(4):1081-1088.
  163. Kuhn M, Völker K, Schwarz K, Carbajo-Lozoya J, Flögel U, Jacoby C, Stypmann J, van Eickels M, Gambaryan S, Hartmann M, Werner M, Wieland T, Schrader J, Baba HA. The natriuretic peptide/guanylyl cyclase--a system functions as a stress-responsive regulator of angiogenesis in mice. J Clin Invest. 2009;119(7):2019-2030.
  164. Kuhn M. Endothelial actions of atrial and B-type natriuretic peptides. Br J Pharmacol. 2012;166(2):522-531.
  165. Kun A, Kiraly I, Pataricza J, Marton Z, Krassoi I, Varro A, Simonsen U, Papp JG, Pajor L. C-type natriuretic peptide hyperpolarizes and relaxes human penile resistance arteries. J Sex Med. 2008;5(5):1114-1125.
  166. Kuo JY, Yeh HI, Chang SH, Shih BF, Wang AM, Chen CY, Hou  CJ. C-type natriuretic peptide in individuals with normal left ventricular systolic function. Scand Cardiovasc J. 2007;41(3):155-159.
  167. Kuroskide Bold ML, de Bold AJ. Stretch-secretion coupling in atrial cardiocytes. Dissociation between atrial natriuretic factor release and mechanical activity. Hypertension. 1991;18(5 Suppl):III169-III178.
  168. Kyriakides ZS, Sbarouni E, Antoniadis A, Iliodromitis EK, Mitropoulos D, Kremastinos DT. Atrial natriuretic peptide augments coronary collateral blood flow: a study during coronary angioplasty. Clin Cardiol. 1998;21(10):737-742.
  169. Langub MC, Dolgas CM, Watson RE, Herman JP. The C-type natriuretic peptide receptor is the predominant natriuretic peptide receptor mRNA expressed in rat hypothalamus. J Neuroendocrinol. 1995;7(4):305-309.
  170. Langub MC, Watson RE, Herman JP. Distribution of natriuretic peptide precursor mRNAs in the rat brain. J Comp Neurol. 1995;356(2):183-199.
  171. Lapiński M, Stepniakowski K, Januszewicz A, Noszczyk B, Szczepańska-Sadowska E. Atrial natriuretic factor enhances vasopressin-induced bradycardia in normotensive (WKY) but not in spontaneously hypertensive (SHR) rats. Eur J Clin Invest. 1988;18(6):568-574.
  172. LaPointe MC, Wu G, Garami M, Yang XP, Gardner DG. Tissue-specific expression of the human brain natriuretic peptide gene in cardiac myocytes. Hypertension. 1996;27(3 Pt 2):715-722.
  173. Laxson DD, Dai XZ, Schwartz JS, Bache RJ. Effects of atrial natriuretic peptide on coronary vascular resistance in the intact awake dog. J Am Coll Cardiol. 1988;11(3):624-629.
  174. Lazo M, Young JH, Brancati FL, Coresh J, Whelton S, Ndumele CE, Hoogeveen R, Ballantyne CM, Selvin E. NH2-terminal pro-brain natriuretic peptide and risk of diabetes. Diabetes. 2013;62(9):3189-3193.
  175. Lee CY, Lieu H, Burnett JC. Designer natriuretic peptides. J Investig Med. 2009;57(1):18-21.
  176. Lee DH, Youn HJ, Choi YS, Lee JM, Park CS, Jung HO, Jeon HK, Lee MY. C-type natriuretic Peptide as a surrogate marker in variant angina pectoris. Korean Circ J. 2013;43(3):168-173.
  177. Lee S, Park SK, Kang KP, Kang SK, Kim SZ, Kim W. Relationship of plasma Dendroaspis natriuretic peptide-like immunoreactivity and echocardiographic parameters in chronic haemodialysis patients. Nephrology. 2004;9(3):171-175.
  178. Leskinen H, Vuolteenaho O, Ruskoaho H. Combined inhibition of endothelin and angiotensin II receptors blocks volume load-induced cardiac hormone release. Circ Res. 1997;80(1):114-123.
  179. Levin ER, Frank HJ. Natriuretic peptides inhibit rat astroglial proliferation: mediation by C receptor. Am J Physiol. 1991;261(2 Pt 2):R453-R457.
  180. Levin ER, Gardner DG, Samson WK. Natriuretic Peptides. N Engl J Med. 1998;339(95):321-328.
  181. Levy FO. Cardiac PDEs and crosstalk between cAMP and cGMP signalling pathways in the regulation of contractility. Naunyn Schmiedebergs Arch Pharmacol. 2013;386(8):665-670.
  182. Lewko B, Endlich N, Kriz W, Stepinski J, Endlich K. C-type natriuretic peptide as a podocyte hormone and modulation of its cGMP production by glucose and mechanical stress. Kidney Int. 2004;66(3):1001-1008.
  183. Li D, Lu CJ, Hao G, Wright H, Woodward L, Liu K, Vergari E, Surdo NC, Herring N, Zaccolo M, Paterson DJ. Efficacy of B-Type Natriuretic Peptide Is Coupled to Phosphodiesterase 2A in Cardiac Sympathetic Neurons. Hypertension. 2015;66(1):190-198.
  184. Li ZQ, Liu YL, Li G, Li B, Liu Y, Li XF, Liu AJ. Inhibitory effects of C-type natriuretic peptide on the differentiation of cardiac fibroblasts, and secretion of monocyte chemoattractant protein-1 and plasminogen activator inhibitor-1. Mol Med Rep. 2015;11(1):159-165.
  185. Light DB, Schwiebert EM, Karlson KH, Stanton BA. Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science. 1989;243(4889):383-385.
  186. Lipari A, Farina E, Gerbino A, Lipari L. Atrial natriuretic peptide (ANP) and oxytocin-expression in the adult rat and mouse cerebellum. Cerebellum Ataxias. 2015;2:12.eCollection 2015.
  187. Ljutić D, Rumboldt Z. The influence of the atrial natriuretic factor on venous tone in man. Int J Clin Pharmacol Res. 1989;9(4):255-260.
  188. Loewi O. Übertragbarkeit der Herznervenwirkung. Pflugers Arch Gesamte Physiol. 1921;189:239-242.
  189. Luchner A, Muders F, Dietl O, Friedrich E, Blumberg F, Protter AA, Riegger GA, Elsner D. Differential expression of cardiac ANP and BNP in a rabbit model of progressive left ventricular dysfunction. Cardiovasc Res. 2001;51(3):601-607.
  190. Lumsden NG, Khambata RS, Hobbs AJ. C-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target. Curr Pharm Des. 2010;16(37):4080-4088.
  191. MacKay MJ, Cheung DW. Inhibition of neuromuscular transmission in the guinea-pig saphenous artery by atriopeptin II. Can J Physiol Pharmacol. 1987;65(9):1988-1990.
  192. Maeder MT, Mariani JA, Kaye DM. Hemodynamic determinants of myocardial B-type natriuretic peptide release: relative contributions of systolic and diastolic wall stress. Hypertension. 2010;6(4):682-689. 
  193. Magnusson M, Jujic A, Hedblad B, Engström G, Persson M, Struck J, Morgenthaler NG, Nilsson P, Newton-Cheh C, Wang TJ, Melander O. Low plasma level of atrial natriuretic peptide predicts development of diabetes: the prospective Malmo Diet and Cancer study. J Clin Endocrinol Metab. 2012;97(2):638-645. 
  194. Mangiafico S, Costello-Boerrigter LC, Andersen IA, Cataliotti A, Burnett JC Jr. Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics. Eur Heart J. 2013;34(12):886-893.
  195. Marin-Grez M, Fleming JT, Steinhausen M. Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature. 1986;324(6096):473-476.
  196. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA. 1999;96(13):7403-7408.
  197. McKenzie JC, Berman NE, Thomas CR, Young JK, Compton LY, Cothran LN, Liu WL, Klein RM. Atrial natriuretic peptide-like (ANP-LIR) and ANP prohormone immunoreactive astrocytes and neurons of human cerebral cortex. Glia. 1994;12(3):228-243.
  198. Melo LG, Veress AT, Ackermann U, Steinhelper ME, Pang SC, Tse Y, Sonnenberg H. Chronic regulation of arterial blood pressure in ANP transgenic and knockout mice: role of cardiovascular sympathetic tone. Cardiovasc Res. 1999;43(2):437-444.
  199. Mendelsohn FA, Allen AM, Chai SY, Sexton PM, Figdor R. Overlapping distributions of receptors for atrial natriuretic peptide and angiotensin II visualized by in vitro autoradiography: morphological basis of physiological antagonism. Can J Physiol Pharmacol. 1987;65(8):1517-1521.
  200. Miyashita K, Itoh H, Tsujimoto H, Tamura N, Fukunaga Y, Sone M, Yamahara K, Taura D, Inuzuka M, Sonoyama T, Nakao K. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes. 2009;58(12):2880-2892.
  201. Mizuno O, Onishi K, Dohi K, Motoyasu M, Okinaka T, Ito M, Isaka N, Nakano T. Effects of therapeutic doses of human atrial natriuretic peptide on load and myocardial performance in patients with congestive heart failure. Am J Cardiol. 2001;88(8):863-866.
  202. Moalem J, Davidov T, Zhang Q, Grover GJ, Weiss HR, Scholz PM. Negative inotropic effects of C-type natriuretic peptide are attenuated in hypertrophied ventricular myocytes associated with reduced cyclic GMP production. J Surg Res. 2006;135(1) 38-44. doi: 10.1016/j.jss.2006.01.012
  203. Moltzau LR, Aronsen JM, Meier S, Skogestad J, Orstavik O, Lothe GB, Sjaastad I, Skomedal T, Osnes JB, Levy FO, Qvigstad E. Different compartmentation of responses to brain natriuretic peptide and C-type natriuretic peptide in failing rat ventricle. J Pharmacol Exp Ther. 2014;350(3):681-690. doi: 10.1124/jpet.114.214882
  204. Mori Y, Nishikawa M, Matsubara H, Toyoda N, Masaki H, Yonemoto T, Takagi T, Inada M. Regulation of atrial natriuretic hormone production by triiodothyronine in cultured rat atrial myocytes. Acta Endocrinol (Copenh). 1991;125(6):694-899.
  205. Moro C, Crampes F, Sengenes C, De Glisezinski I, Galitzky J, Thalamas C, Lafontan M, Berlan M. Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans. FASEB J. 2004;18(7):908-910. doi: 10.1096/fj.03-1086fje
  206. Moro C, Pillard F, de Glisezinski I, Klimcakova E, Crampes F, Thalamas C, Harant I, Marques MA, Lafontan M, Berlan M. Exercise-induced lipid mobilization in subcutaneous adipose tissue is mainly related to natriuretic peptides in overweight men. Am J Physiol Endocrinol Metab. 2008;295(2):E505-E513. doi: 10.1152/ajpendo.90227.2008
  207. Moro C, Lafontan M. Natriuretic peptides and cGMP signaling control of energy homeostasis. Am J Physiol Heart Circ Physiol. 2013;304(3):H358-H368. doi: 10.1152/ajpheart.00704.2012
  208. Moyes AJ, Khambata RS, Villar I, Bubb KJ, Baliga RS, Lumsden NG, Xiao F, Gane PJ, Rebstock AS, Worthington RJ, Simone MI, Mota F, Rivilla F, Vallejo S, Peiró C, Sánchez Ferrer CF, Djordjevic S, Caulfield MJ, MacAllister RJ, Selwood DL, Ahluwalia A, Hobbs AJ. Endothelial C-type natriuretic peptide maintains vascular homeostasis. J Clin Invest. 2014;124(9):4039-4051.doi: 10.1172/JCI74281
  209. Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest. 1991;87(4):1402-1412.doi: 10.1172/JCI115146
  210. Mulvany MJ, Nyborg NC. Atrial natriuretic factor causes specific relaxation of rat renal arcuate arteries. Br J Pharmacol. 1985;86(2):447-453.
  211. Мурашов А.Н., Давыдова С.А., Степанова Т.В., Беспалова Ж.В., Медведев О.С. Барорефлекторный компонент в механизме гипотензивного действия предсердных пептидов. Физиологический журнал СССР. 1990;76(7):875-880. 
  212. Nakajima K, Onishi K, Dohi K, Tanabe M, Kurita T, Yamanaka T, Ito M, Isaka N, Nobori T, Nakano T. Effects of human atrial natriuretic peptide on cardiac function and hemodynamics in patients with high plasma BNP levels. Int J Cardiol. 2005;104(3):332-337. doi: 10.1016/j.ijcard.2004.12.020
  213. Nakamaru M, Inagami T. Atrial natriuretic factor inhibits nore­pinephrine release evoked by sympathetic nerve stimulation in isolated perfused rat mesenteric arteries. Eur J Pharmacol. 1986;
  214. 123(3):459-461.
  215. Nakamura M, Arakawa N, Yoshida H, Makita S, Hiramori K. Vasodilatory effects of C-type natriuretic peptide on forearm resistance vessels are distinct from those of atrial natriuretic peptide in chronic heart failure. Circulation. 1994;90(3):1210-1214.
  216. Nakao K, Yamada T, Itoh H, Shirakami G, Saito Y, Sugawara A, Mukoyama M, Arai H, Hosoda K, Morii N. Possible antagonistic relationship between atrial natriuretic peptide (ANP)-brain natriuretic peptide (BNP) system and brain renin-angiotensin system in central control of body fluid and cardiovascular function. Clin Exp Hypertens A. 1988;10(6):1289-1291.
  217. Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997;327(Pt 3):625-635.
  218. Nazario B, Hu RM, Pedram A, Prins B, Levin ER. Atrial and brain natriuretic peptides stimulate the production and secretion of C-type natriuretic peptide from bovine aortic endothelial cells. J Clin Invest. 1995;95(3):1151-1157. doi: 10.1172/JCI117763
  219. Neeland IJ, Winders BR, Ayers CR, Das SR, Chang AY, Berry JD, Khera A, McGuire DK, Vega GL, de Lemos JA, Turer AT. Higher natriuretic peptide levels associate with a favorable adipose tissue distribution profile. J Am Coll Cardiol. 2013;62(8):752-760. doi: 10.1016/j.jacc.2013.03.038
  220. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666-676. doi: 10.1038/ng.361
  221. Neyses L, Nitsch J, Biegel T, Heinrichs S, Nissen HD, Lüderitz B. Elevated levels of atrial natriuretic peptide and plasma catecholamines in arterial hypertension—indications for an interaction. Z Kardiol. 1988;77(7):407-412.
  222. Nguyen TT, Ong H, De Léan A. Secretion and biosynthesis of atrial natriuretic factor by cultured adrenal chromaffin cells. FEBS Lett. 1988;231(2):393-396.
  223. Nir A, Zhang DF, Fixler R, Burnett JC, Eilam Y, Hasin Y. C-type natriuretic peptide has a negative inotropic effect on cardiac myocytes. Eur J Pharmacol. 2001;412(3):195-201.
  224. Nonoguchi H, Knepper MA, Manganiello VC. Effects of atrial natriuretic factor on cyclic guanosine monophosphate and cyclic adenosine monophosphate accumulation in microdissected nephron segments from rats. J Clin Invest. 1987;79(2):500-507. doi: 10.1172/JCI112840
  225. Nonoguchi H, Sands JM, Knepper MA. ANF inhibits NaCl and fluid absorption in cortical collecting duct of rat kidney. Am J Physiol. 1989;256(1 Pt 2):F179-F186.
  226. Nonoguchi H, Izumi Y, Nakayama Y, Matsuzaki T, Yasuoka Y, Inoue T, Inoue H, Mouri T, Kawahara K, Saito H, Tomita K. Effects of atrial natriuretic peptide on bicarbonate transport in long- and short-looped medullary thick ascending limbs of rats. PLoS One. 2013;8(12):e83146. doi: 10.1371/journal.pone.0083146
  227. Ogawa Y, Itoh H, Tamura N, Suga S, Yoshimasa T, Uehira M, Matsuda S, Shiono S, Nishimoto H, Nakao K. Molecular cloning of the complementary DNA and gene that encode mouse brain natriuretic peptide and generation of transgenic mice that overexpress the brain natriuretic peptide gene. J Clin Invest. 1994;93(5):1911-1921. doi: 10.1172/JCI117182
  228. Ogawa T, Linz W, Stevenson M, Bruneau BG, Kuroski de Bold ML, Chen JH, Eid H, Schölkens BA, de Bold AJ. Evidence for load-dependent and load-independent determinants of cardiac natriuretic peptide production. Circulation. 1996;93(11):2059-2067.
  229. Ogawa T, de Bold AJ. The heart as an endocrine organ. Endocr Connect. 2014;3(2):R31-R44. doi: 10.1530/EC-14-0012
  230. Ohte N, Cheng CP, Suzuki M, Little WC. Effects of atrial natriuretic peptide on left ventricular performance in conscious dogs before and after pacing-induced heart failure. J Pharmacol Exp Ther. 1999;291(2):589-595.
  231. Okamura T, Inoue S, Toda N. Action of atrial natriuretic peptide (ANP) on dog cerebral arteries: evidence that neurogenic relaxation is not mediated by release of ANP. Br J Pharmacol. 1989;97(4):1258-1264.
  232. Okumura K, Yasue H, Fujii H, Kugiyama K, Matsuyama K, Yoshimura M, Jougasaki M, Kikuta K, Kato H, Tanaka H, et al. Effects of brain (B-type) natriuretic peptide on coronary artery diameter and coronary hemodynamic variables in humans: comparison with effects on systemic hemodynamic variables. J Am Coll Cardiol. 1995;25(2):342-348.
  233. Ong H, Lazure C, Nguyen TT, McNicoll N, Seidah N, Chrétien M, De Léan A. Bovine adrenal chromaffin granules are a site of synthesis of atrial natriuretic factor. Biochem Biophys Res Commun. 1987;147(3):957-963.
  234. Oparil S, Chen YF, Peng N, Wyss JM. Anterior hypothalamic norepinephrine, atrial natriuretic peptide, and hypertension. Front Neuroendocrinol. 1996;17(2):212-246. doi: 10.1006/frne.1996.0006
  235. Ou LC, Sardella GL, Hill NS, Thron CD. Does atrial natriuretic factor protect against right ventricular overload? I. Hemodynamic study. J Appl Physiol. 1989;67(4):1606-1611.
  236. Ozawa T, Shinke T, Shite J, Takaoka H, Inoue N, Matsumoto H, Watanabe S, Yoshikawa R, Otake H, Matsumoto D, Ogasawara D, Yokoyama M, Hirata KI. Effects of human atrial natriuretic peptide on myocardial performance and energetics in heart failure due to previous myocardial infarction. J Cardiol. 2015;66(3):232-238. doi: 10.1016/j.jjcc.2014.12.020
  237. Packer M, McMurray JJ, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile M, Andersen K, Arango JL, Arnold JM, Bělohlávek J, Böhm M, Boytsov S, Burgess LJ, Cabrera W, Calvo C, Chen CH, Dukat A, Duarte YC, Erglis A, Fu M, Gomez E, Gonzàlez-Medina A, Hagège AA, Huang J, Katova T, Kiatchoosakun S, Kim KS, Kozan Ö, Llamas EB, Martinez F, Merkely B, Mendoza I, Mosterd  A, Negrusz-Kawecka M, Peuhkurinen K, Ramires FJ, Refsgaard J, Rosenthal A, Senni M, Sibulo AS Jr, Silva-Cardoso J, Squire IB, Starling RC, Teerlink JR, Vanhaecke J, Vinereanu D, Wong RC, PARADIGM-HF Investigators and Coordinators. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015;131(1):54-61.doi: 10.1161/CIRCULATIONAHA.114.013748
  238. Palmer SC, Prickett TC, Espiner EA, Yandle TG, Richards AM. Regional release and clearance of C-type natriuretic peptides in the human circulation and relation to cardiac function. Hypertension. 2009;54(3):612-618. doi: 10.1161/HYPERTENSIONAHA.109.135608
  239. Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca (2+) release, and activation of protein kinase C. Front Mol Neurosci. 2014;7:75.eCollection. doi: 10.3389/fnmol.2014.00075
  240. Park BM, Oh YB, Gao S, Cha SA, Kang KP, Kim SH. Angiotensin III stimulates high stretch-induced ANP secretion via angiotensin type 2 receptor. Peptides. 2013;42:131-137. doi: 10.1016/j.peptides.2013.01.018
  241. Patel MB, Hintze TH. Atriopeptin 24 regulates myocardial function via Frank-Starling mechanism in conscious dogs. Am J Physiol. 1990;258(1 Pt 2): H183-H190.
  242. Peake NJ, Hobbs AJ, Pingguan-Murphy B, Salter DM, Berenbaum F, Chowdhury TT. Role of C-type natriuretic peptide signalling in maintaining cartilage and bone function. Osteoarthritis Cartilage. 2014;22(11):1800-1807. doi: 10.1016/j.joca.2014.07.018
  243. Perera RK, Sprenger JU, Steinbrecher JH, Hübscher D, Lehnart SE, Abesser M, Schuh K, El-Armouche A, Nikolaev VO. Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy. Circ Res. 2015;116(8):1304-1311. doi: 10.1161/CIRCRESAHA.116.306082
  244. Pettersson A, Hedner J, Hedner T. Relationship between renal sympathetic activity and diuretic effects of atrial natriuretic peptide (ANP) in the rat. Acta Physiol Scand. 1989;135(3):323-333. doi: 10.1111/j.1748-1716.1989.tb08584.x
  245. Pierkes M, Gambaryan S, Bokník P, Lohmann SM, Schmitz W, Potthast R, Holtwick R, Kuhn M. Increased effects of C-type natriuretic peptide on cardiac ventricular contractility and relaxation in guanylyl cyclase A-deficient mice. Cardiovasc Res. 2002;53(4):852-861.
  246. Plante E, Menaouar A, Danalache BA, Broderick TL, Jankowski M, Gutkowska J. Treatment with brain natriuretic peptide prevents the development of cardiac dysfunction in obese diabetic db/db mice. Diabetologia. 2014;57(6):1257-1267. doi: 10.1007/s00125-014-3201-4
  247. Porzionato A, Macchi V, Rucinski M, Malendowicz LK, De Caro R. Natriuretic peptides in the regulation of the hypothalamic-pituitary-adrenal axis. Int Rev Cell Mol Biol. 2010;280:1-39. doi: 10.1016/S1937-6448(10)80001-2
  248. Potter LR. Natriuretic peptide metabolism, clearance and degradation. FEBS J. 2011;278(11):1808-1817. doi: 10.1111/j.1742-4658.2011.08082.x
  249. Protter AA, Wallace AM, Ferraris VA, Weishaar RE. Relaxant effect of human brain natriuretic peptide on human artery and vein tissue. Am J Hypertens. 1996;9(5):432-436.
  250. Rademaker MT, Charles CJ, Espiner EA, Frampton CM, Nicholls MG, Richards AM. Combined inhibition of angiotensin II and endothelin suppresses the brain natriuretic peptide response to developing heart failure. Clin Sci. 2004;106(6):569-576. doi: 10.1042/CS20030366
  251. Rademaker MT, Richards AM. Cardiac natriuretic peptides for cardiac health. Clin Sci. 2005;108(1):23-36. doi: 10.1042/CS20040253
  252. Rankin AJ, Swift FV. The inotropic effect of atrial natriuretic factor in the anesthetized rabbit. Pflugers Arch. 1990;417(4):353-359.
  253. Re R. The myocardial intracellular renin-angiotensin system. Am J Cardiol. 1987;59(2):56A-58A.
  254. Richards AM. The renin-angiotensin-aldosterone system and the cardiac natriuretic peptides. Heart. 1996;76(3 Suppl. 3):36-44.
  255. Richards AM. C-type natriuretic peptide and cardiac fibrosis. Hypertension. 2011;57(2):154-155. doi: 10.1161/HYPERTENSIONAHA.110.163865
  256. Rocha AS, Kudo LH. Atrial peptide and cGMP effects on NaCl transport in inner medullary collecting duct. Am J Physiol. 1990;259(2 Pt 2):F258-F268.
  257. Rodseth RN, Biccard BM, Le Manach Y, Sessler DI, Lurati Buse GA, Thabane L, Schutt RC, Bolliger D, Cagini L, Cardinale D, Chong CP, Chu R, Cnotliwy M, Di Somma S, Fahrner R, Lim WK, Mahla E, Manikandan R, Puma F, Pyun WB, Radović  M, Rajagopalan S, Suttie S, Vanniyasingam T, van Gaal WJ, Waliszek M, Devereaux PJ. The prognostic value of pre-operative and post-operative B-type natriuretic peptides in patients undergoing noncardiac surgery: B-type natriuretic peptide and N-terminal fragment of pro-B-type natriuretic peptide: a systematic review and individual patient data meta-analysis. J Am Coll Cardiol. 2014;63(2):170-180.doi: 10.1016/j.jacc.2013.08.1630
  258. Romano L, Coviello A, Jerez S, Peral de Bruno M. Role of nitric oxide on the vasorelaxant effect of atrial natriuretic peptide on rabbit aorta basal tone. Can J Physiol Pharmacol. 2002;80(10):1022-1029.
  259. Romieu P, Gobaille S, Aunis D, Zwiller J. Injection of the neuropeptide CNP into dopaminergic rat brain areas decreases alcohol intake. Ann NY Acad Sci. 2008;1139:27-33. doi: 10.1196/annals.1432.050
  260. Ropero AB, Soriano S, Tudurí E, Marroquí L, Téllez N, Gassner B, Juan-Picó P, Montanya E, Quesada I, Kuhn M, Nadal A. The atrial natriuretic peptide and guanylyl cyclase-A system modulates pancreatic beta-cell function. Endocrinology. 2010;151(8):3665-3674. doi: 10.1210/en.2010-0119
  261. Rose RA, Anand-Srivastava MB, Giles WR, Bains JS. C-type natriuretic peptide inhibits L-type Ca2+ current in rat magnocellular neurosecretory cells by activating the NPR-C receptor. J Neurophysiol. 2005;94(1):612-621. doi: 10.1152/jn.00057.2005
  262. Rose RA, Giles WR. Natriuretic peptide C receptor signalling in the heart and vasculature. J Physiol. 2008;586(2):353-366. doi: 10.1113/jphysiol.2007.144253
  263. Ruskoaho H, Leskinen H, Magga J, Taskinen P, Mäntymaa P, Vuolteenaho O, Leppäluoto J. Mechanisms of mechanical load-induced atrial natriuretic peptide secretion: role of endothelin, nitric oxide, and angiotensin II. J Mol Med (Berl). 1997;75(11-12):876-885.
  264. Sabrane K, Gambaryan S, Brandes RP, Holtwick R, Voss M, Kuhn M. Increased sensitivity to endothelial nitric oxide (NO) contributes to arterial normotension in mice with vascular smooth muscle-selective deletion of the atrial natriuretic peptide (ANP) receptor. J Biol Chem. 2003;278(20):17963-17968. doi: 10.1074/jbc.M213113200
  265. Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, Zwiener M, Baba HA, Yanagisawa M, Kuhn M. Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest. 2005;115(6):1666-1674. doi: 10.1172/JCI23360
  266. Sagnella GA, Markandu ND, Shore AC, MacGregor GA. Plasma immunoreactive atrial natriuretic peptide and changes in dietary sodium intake in man. Life Sci. 1987;40(2):139-143.
  267. Sagnella GA. Measurement and significance of circulating natriuretic peptides in cardiovascular disease. Clin Sci (Lond). 1998;95(5):
  268. 519-529.
  269. Salazar FJ, Fiksen-Olsen MJ, Opgenorth TJ, Granger JP, Burnett JC, Romero JC. Renal effects of ANP without changes in glomerular filtration rate and blood pressure. Am J Physiol. 1986;251(3 Pt 2):F532-F536.
  270. Sangaralingham SJ, Heublein DM, Grande JP, Cataliotti A, Rule  AD, McKie PM, Martin FL, Burnett JC. Urinary C-type natriuretic peptide excretion: a potential novel biomarker for renal fibrosis during aging. Am J Physiol Renal Physiol. 2011;301(5):F943-F952.doi: 10.1152/ajprenal.00170.2011
  271. Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, Harders GE, Chen HH, Burnett JC. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension. 2011;57(2):201-207. doi: 10.1161/HYPERTENSIONAHA.110.160796
  272. Sangaralingham SJ, McKie PM, Ichiki T, Scott CG, Heublein DM, Chen HH, Bailey KR, Redfield MM, Rodeheffer RJ, Burnett JC. Circulating C-type natriuretic peptide and its relationship to cardiovascular disease in the general population. Hypertension. 2015;65(6):1187-1194. doi: 10.1161/HYPERTENSIONAHA.115.05366
  273. Savoie P, de Champlain J, Anand-Srivastava MB. C-type natriuretic peptide and brain natriuretic peptide inhibit adenylyl cyclase activity: interaction with ANF-R2/ANP-C receptors. FEBS Lett. 1995;370(1-2):6-10.
  274. Scallan JP, Davis MJ, Huxley VH. Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides. J Physiol. 2013;591(Pt 20):5071-5081. doi: 10.1113/jphysiol.2013.260042
  275. Schiebinger RJ, Kem DC, Brown RD. Effect of atrial natriuretic peptide on ACTH, dibutyryl cAMP, angiotensin II and potassium-stimulated aldosterone secretion by rat adrenal glomerulosa cells. Life Sci. 1988;42(8):919-926.
  276. Schirger JA, Heublein DM, Chen HH, Lisy O, Jougasaki M, Wennberg PW, Burnett JC. Presence of Dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. Mayo Clin Proc. 1999;74(2):126-130. doi: 10.4065/74.2.126
  277. Schmidt H, Stonkute A, Jüttner R, Koesling D, Friebe A, Rathjen FG. C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons. Proc Natl Acad Sci USA. 2009;106(39):16847-16852. doi: 10.1073/pnas.0906571106
  278. Schmitt M, Broadley AJ, Nightingale AK, Payne N, Gunaruwan P, Taylor J, Lee L, Cockcroft J, Struthers AD, Frenneaux MP. Atrial natriuretic peptide regulates regional vascular volume and venous tone in humans. Arterioscler Thromb Vasc Biol. 2003;23(10):1833-1838. doi: 10.1161/01.ATV.0000084826.86349.1D
  279. Schreier B, Börner S, Völker K, Gambaryan S, Schäfer SC, Kuhlencordt P, Gassner B, Kuhn M. The heart communicates with the endothelium through the guanylyl cyclase-A receptor: acute handling of intravascular volume in response to volume expansion. Endocrinology. 2008;149(8):4193-4199. doi: 10.1210/en.2008-0212
  280. Schultz HD, Gardner DG, Deschepper CF, Coleridge HM, Coleridge JC. Vagal C-fiber blockade abolishes sympathetic inhibition by atrial natriuretic factor. Am J Physiol. 1988;255(1  Pt  2):
  281. R6-R13.
  282. Schultz HD, Steele MK, Gardner DG. Central administration of atrial peptide decreases sympathetic outflow in rats. Am J Physiol. 1990;258(5 Pt 2):R1250-R1256.
  283. Schulz-Knappe P, Forssmann K, Herbst F, Hock D, Pipkorn R, Forssmann WG. Isolation and structural analysis of «urodilatin», a new peptide of the cardiodilatin-(ANP)-family, extracted from human urine. Klin Wochenschr. 1988;66(17):752-759.
  284. Schweitz H, Vigne P, Moinier D, Frelin C, Lazdunski M. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem. 1992;267(20):13928-13932.
  285. Scotland RS, Cohen M, Foster P, Lovell M, Mathur A, Ahluwalia A, Hobbs AJ. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proc Natl Acad Sci USA. 2005;102(40):14452-14457. doi: 10.1073/pnas.0504961102
  286. Seguchi H, Nishimura J, Toyofuku K, Kobayashi S, Kumazawa J, Kanaide H. The mechanism of relaxation induced by atrial natriuretic peptide in the porcine renal artery. Br J Pharmacol. 1996;118(2):343-351.
  287. Sexton PM, Zhuo J, Mendelsohn FA. Localization and regulation of renal receptors for angiotensin II and atrial natriuretic peptide. Tohoku J Exp Med. 1992;166(1):41-56.
  288. Seymour AA, Sweet CS, Stabilito II, Emmert SE. Cardiac and hemodynamic esponses to synthetic atrial natriuretic factor in rats. Life Sci. 1987;40(6):511-519.
  289. Shah SJ, Michaels AD. Acute effects of intravenous nesiritide on cardiac contractility in heart failure. J Card Fail. 2010;16(9):720-727. doi: 10.1016/j.cardfail.2010.04.008
  290. Sharma RK, Duda T. Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions. Front Mol Neurosci. 2014;7:56.doi: 10.3389/fnmol.2014.00056
  291. Shi SJ, Vellaichamy E, Chin SY, Smithies O, Navar LG, Pandey  KN. Natriuretic peptide receptor A mediates renal sodium excretory responses to blood volume expansion. Am J Physiol Renal Physiol. 2003;285(4):F694-F702. doi: 10.1152/ajprenal.00097.2003
  292. Shimizu A, Ueeda M, Watanabe H, Hina K, Yamada N, Kusachi S, Saito D, Haraoka S, Tsuji T. Enhancement of coronary conductance by alpha-human atrial natriuretic polypeptide without effects on myocardial contractility. Arzneimittelforschung. 1988;38(11):1572-1577.
  293. Shirakami G, Itoh H, Suga S, Komatsu Y, Hama N, Mori K, Nakao K. Central action of C-type natriuretic peptide on vasopressin secretion in conscious rats. Neurosci Lett. 1993;159(1-2):25-28.
  294. Skryabin BV, Sukonina V, Jordan U, Lewejohann L, Sachser N, Muslimov I, Tiedge H, Brosius J. Neuronal untranslated BC1 RNA: targeted gene elimination in mice. Mol Cell Biol. 2003;23(18):6435-6441.
  295. Skryabin BV, Holtwick R, Fabritz L, Kruse MN, Veltrup I, Stypmann J, Kirchhof P, Sabrane K, Bubikat A, Voss M, Kuhn M. Hypervolemic hypertension in mice with systemic inactivation of the (floxed) guanylyl cyclase-A gene by alphaMHC-Cre-mediated recombination. Genesis. 2004;39(4):288-298. doi: 10.1002/gene.20056
  296. Smith JB, Lincoln TM. Angiotensin decreases cyclic GMP accumulation produced by atrial natriuretic factor. Am J Physiol. 1987;253(1 Pt 1):147-150.
  297. Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, Kangawa K. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2005;45(4):608-616. doi: 10.1016/j.jacc.2004.10.067
  298. Sonnenberg H, Cupples WA, de Bold AJ, Veress AT. Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can J Physiol Pharmacol. 1982;60(9):1149-1152.
  299. Sonnenberg H, Honrath U, Chong CK, Wilson DR. Atrial natriuretic factor inhibits sodium transport in medullary collecting duct. Am J Physiol. 1986;250(6 Pt 2):F963-F966.
  300. Springer J, Azer J, Hua R, Robbins C, Adamczyk A, McBoyle S, Bissell MB, Rose RA. The natriuretic peptides BNP and CNP increase heart rate and electrical conduction by stimulating ionic currents in the sinoatrial node and atrial myocardium following activation of guanylyl cyclase-linked natriuretic peptide receptors. J Mol Cell Cardiol. 2012;52(5):1122-1134. doi: 10.1016/j.yjmcc.2012.01.018
  301. Steele MK, Gardner DG, Xie PL, Schultz HD. Interactions between ANP and ANG II in regulating blood pressure and sympathetic outflow. Am J Physiol. 1991;260(6 Pt 2):R1145-R1151.
  302. Steinhelper ME, Cochrane KL, Field LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990;16(3):301-307.
  303. Stingo AJ, Clavell AL, Aarhus LL, Burnett JC. Cardiovascular and renal actions of C-type natriuretic peptide. Am J Physiol. 1992;262:H308-H312.
  304. Stingo AJ, Clavell AL, Heublein DM, Wei CM, Pittelkow MR, Burnett JC. Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol. 1992;263(4 Pt 2): H1318-H1321.
  305. Sudoh T, Kangawa K, Minamino N, Matsuo H. A new natriuretic peptide in porcine brain. Nature. 1988;332(6159):78-81. doi: 10.1038/332078a0
  306. Sudoh T, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun. 1990;168(2):863-870.
  307. Suematsu Y, Miura SI, Goto M, Matsuo Y, Arimura T, Kuwano T, Imaizumi S, Iwata A, Yahiro E, Saku K. LCZ696, an angiotensin receptor-neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice. Eur J Heart Fail. 2016. doi: 10.1002/ejhf.474. 
  308. Suga S, Itoh H, Komatsu Y, Ogawa Y, Hama N, Yoshimasa T, Nakao K. Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells—evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology. 1993;133(6):3038-3041. doi: 10.1210/endo.133.6.8243333
  309. Sultanian R, Deng Y, Kaufman S. Atrial natriuretic factor increases splenic microvascular pressure and fluid extravasation in the rat. J Physiol. 2001;533(Pt 1):273-280.
  310. Suzuki E, Hirata Y, Hayakawa H, Omata M, Kojima M, Kangawa K, Minamino N, Matsuo H. Evidence for C-type natriuretic peptide production in the rat kidney. Biochem Biophys Res Commun. 1993;192(2):532-538. doi: 10.1006/bbrc.1993.1448
  311. Tajima M, Bartunek J, Weinberg EO, Ito N, Lorell BH. Atrial natriuretic peptide has different effects on contractility and intracellular pH in normal and hypertrophied myocytes from pressure-overloaded hearts. Circulation. 1998;98(24):2760-2764.
  312. Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S. A novel natriuretic peptide isolated from eel cardiac ventricles. FEBS Lett. 1991;282(2):317-320.
  313. Takekoshi K, Ishii K, Isobe K, Nomura F, Nammoku T, Nakai T. Effects of natriuretic peptides (ANP, BNP, CNP) on catecholamine synthesis and TH mRNA levels in PC12 cells. Life Sci. 2000;66(22):PL303-PL311.
  314. Takemura G, Fujiwara H, Horike K, Mukoyama M, Saito Y, Nakao K, Matsuda M, Kawamura A, Ishida M, Kida M, et al. Ventricular expression of atrial natriuretic polypeptide and its relations with hemodynamics and histology in dilated human hearts. Immunohistochemical study of the endomyocardial biopsy specimens. Circulation. 1989;80(5):1137-1147.
  315. Takeshita A, Imaizumi T, Nakamura N, Higashi H, Sasaki T, Nakamura M, Kangawa K, Matsuo H. Attenuation of reflex forearm vasoconstriction by alpha-human atrial natriuretic peptide in men. Circ Res. 1987;61(4):555-559.
  316. Tamura N, Ogawa Y, Yasoda A, Itoh H, Saito Y, Nakao K. Two cardiac natriuretic peptide genes (atrial natriuretic peptide and brain natriuretic peptide) are organized in tandem in the mouse and human genomes. J Mol Cell Cardiol. 1996;28(8):1811-1815. doi: 10.1006/jmcc.1996.0170
  317. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA. 2000;97(8):4239-4244. doi:10.1073/pnas.070371497
  318. Telegdy G. The action of ANP, BNP and related peptides on motivated behavior in rats. Rev Neurosci. 1994;5(4):309-315.
  319. Terada Y, Moriyama T, Martin BM, Knepper MA, Garcia-Perez A. RT-PCR microlocalization of mRNA for guanylyl cyclase-coupled ANF receptor in rat kidney. Am J Physiol. 1991;261(6 Pt 2): F1080-F1087.
  320. Ter-Avetisyan G, Rathjen FG, Schmidt H. Bifurcation of axons from cranial sensory neurons is disabled in the absence of Npr2-induced cGMP signaling. J Neurosci. 2014;34(3):737-747. doi: 10.1523/JNEUROSCI.4183-13.2014
  321. Theilig F, Wu Q. ANP-induced signalling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol. 2015;308(10):F1047-F1055.doi: 10.1152/ajprenal.00164.2014
  322. Thibault G, Charbonneau C, Bilodeau J, Schiffrin EL, Garcia R. Rat brain natriuretic peptide is localized in atrial granules and released into the circulation. Am J Physiol. 1992;263(2 Pt 2):R301-R309.
  323. Thomas CJ, Woods RL. Guanylyl cyclase receptors mediate cardiopulmonary vagal reflex actions of ANP. Hypertension. 2003;41(2):279-285.
  324. Thomas CJ, McAllen RM, Salo LM, Woods RL. Restorative effect of atrial natriuretic peptide or chronic neutral endopeptidase inhibition on blunted cardiopulmonary vagal reflexes in aged rats. Hypertension. 2008;52(4):696-701. doi: 10.1161/HYPERTENSIONAHA.108.111302
  325. Thorén P, Morgan DA, O’Neill TP, Needleman P, Mark AL, Brody MJ. Atrial natriuretic factor activates vagal afferents in rats. Fed Proc. 1985;44(6):1886.
  326. Thorén P, Mark AL, Morgan DA, O’Neill TP, Needleman P, Brody MJ. Activation of vagal depressor reflexes by atriopeptins inhibits renal sympathetic nerve activity. Am J Physiol. 1986;251(6 Pt 2):H1252-H1259.
  327. Thygesen K, Mair J, Mueller C, Huber K, Weber M, Plebani M, Hasin Y, Biasucci LM, Giannitsis E, Lindahl B, Koenig W, Tubaro M, Collinson P, Katus H, Galvani M, Venge P, Alpert JS, Hamm C, Jaffe AS. Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Eur Heart J. 2012;33(16):2001-2006. doi: 10.1093/eurheartj/ehq509
  328. Tohse N, Nakaya H, Takeda Y, Kanno M. Cyclic GMP-mediated inhibition of L-type Ca2+ channel activity by human natriuretic peptide in rabbit heart cells. Br J Pharmacol. 1995;114(5):1076-1082.
  329. Tokudome T, Horio T, Soeki T, Mori K, Kishimoto I, Suga S, Yoshihara F, Kawano Y, Kohno M, Kangawa K. Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology. 2004;145(5):2131-2140. doi: 10.1210/en.2003-1260
  330. Torda T, Nazarali AJ, Saavedra JM. Brain natriuretic peptide receptors in the rat peripheral sympathetic ganglia. Biochem Biophys Res Commun. 1989;159(3):1032-1038.
  331. Towler DA. Molecular and cellular aspects of calcific aortic valve disease. Circ Res. 2013;113(2):198-208. doi: 10.1161/CIRCRESAHA.113.300155
  332. Trachte GJ, Kanwal S, Elmquist BJ, Ziegler RJ. C-type natriuretic peptide neuromodulates via «clearance» receptors. Am J Physiol. 1995;268(4 Pt 1):978-984.
  333. Tsuneyoshi H, Nishina T, Nomoto T, Kanemitsu H, Kawakami R, Unimonh O, Nishimura K, Komeda M. Atrial natriuretic peptide helps prevent late remodeling after left ventricular aneurysm repair. Circulation. 2004;110(11 Suppl 1):II174- II179. doi: 10.1161/01.CIR.0000138348.77856.ef
  334. Tucker VL, Simanonok KE, Renkin EM. Tissue-specific effects of physiological ANP infusion on blood-tissue albumin transport. Am J Physiol. 1992;263(4 Pt 2):R945-R953.
  335. Ueda S, Minamino N, Aburaya M, Kangawa K, Matsukura S, Matsuo H. Distribution and characterization of immunoreactive porcine C-type natriuretic peptide. Biochem Biophys Res Commun. 1991;175(3):759-767.
  336. Ueda S, Minamino N, Sudoh T, Kangawa K, Matsuo H. Regional distribution of immunoreactive brain natriuretic peptide in porcine brain and spinal cord. Biochem Biophys Res Commun. 1988;155(2):733-739.
  337. Ueno H, Haruno A, Morisaki N, Furuya M, Kangawa K, Takeshita A, Saito Y. Local expression of C-type natriuretic peptide markedly suppresses neointimal formation in rat injured arteries through an autocrine/paracrine loop. Circulation. 1997;96(7):2272-2279.
  338. Unger T, Badoer E, Gareis C, Girchev R, Kotrba M, Qadri F, Rettig R, Rohmeiss P. Atrial natriuretic peptide (ANP) as a neuropeptide: interaction with angiotensin II on volume control and renal sodium handling. Br J Clin Pharmacol. 1990;30(Suppl 1):83S-88S.
  339. Valentin JP, Ribstein J, Mimran A. Effect of nicardipine and atriopeptin on transcapillary shift of fluid and proteins. Am J Physiol. 1989;257(1 Pt 2):R174-R179.
  340. Vasques GA, Arnhold IJ, Jorge AA. Role of the natriuretic peptide system in normal growth and growth disorders. Horm Res Paediatr. 2014;82(4):222-229. doi: 10.1159/000365049
  341. Vaxelaire JF, Laurent S, Lacolley P, Briand V, Schmitt H, Michel JB. Atrial natriuretic peptide decreases contractility of cultured chick ventricular cells. Life Sci. 1989;454(1):41-48.
  342. Villar IC, Panayiotou CM, Sheraz A, Madhani M, Scotland RS, Nobles M, Kemp-Harper B, Ahluwalia A, Hobbs AJ. Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res. 2007;74(3):515-525. doi: 10.1016/j.cardiores.2007.02.032
  343. Vink S, Jin AH, Poth KJ, Head GA, Alewood PF. Natriuretic peptide drug leads from snake venom. Toxicon. 2012;59(4):434-445. doi: 10.1016/j.toxicon.2010.12.001
  344. Vlasuk GP, Babilon RW, Nutt RF, Ciccarone TM, Winquist RJ. The actions of atrial natriuretic factor on the vascular wall. Can J Physiol Pharmacol. 1987;65(8):1684-1689.
  345. Vollmar AM, Paumgartner G, Gerbes AL. Differential gene expression of the three natriuretic peptides and natriuretic peptide receptor subtypes in human liver. Gut. 1997;40(1):145-150.
  346. Volpe M, Rubattu S, Burnett J. Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur Heart J. 2014;35(7):419-425. doi: 10.1093/eurheartj/eht466
  347. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci. (Lond). 2016;130(2):57-77. doi: 10.1042/CS20150469
  348. Wallace DP, Rome LA, Sullivan LP, Grantham JJ. cAMP-dependent fluid secretion in rat inner medullary collecting ducts. Am J Physiol Renal Physiol. 2001;280(6):F1019-F1029.
  349. Wang TJ, Larson MG, Keyes MJ, Levy D, Benjamin EJ, Vasan  RS. Association of plasma natriuretic peptide levels with metabolic risk factors in ambulatory individuals. Circulation. 2007;115(11):1345-1353. doi: 10.1161/CIRCULATIONAHA.106.655142
  350. Watanabe S, Shite J, Takaoka H, Shinke T, Imuro Y, Ozawa T, Otake H, Matsumoto D, Ogasawara D, Paredes OL, Yokoyama M. Myocardial stiffness is an important determinant of the plasma brain natriuretic peptide concentration in patients with both diastolic and systolic heart failure. Eur Heart J. 2006;27(7):832-838. doi: 10.1093/eurheartj/ehi772
  351. Webb DJ, Benjamin N, Allen MJ, Brown J, O’Flynn M, Cockcroft JR. Vascular responses to local atrial natriuretic peptide infusion in man. Br J Clin Pharmacol. 1988;26(3):245-251.
  352. Weber NC, Blumenthal SB, Hartung T, Vollmar AM, Kiemer AK. ANP inhibits TNF-alpha-induced endothelial MCP-1 expression-involvement of p38 MAPK and MKP-1. J Leukoc Biol. 2003;74(5):932-941.doi: 10.1189/jlb.0603254
  353. Wei CM, Heublein DM, Perrella MA, Lerman A, Rodeheffer RJ, McGregor CG, Edwards WD, Schaff HV, Burnett JC. Natriuretic peptide system in human heart failure. Circulation. 1993;88(3):1004-1009.
  354. Weninger S, De Maeyer JH, Lefebvre RA. Study of the regulation of the inotropic response to 5-HT4 receptor activation via phosphodiesterases and its cross-talk with C-type natriuretic peptide in porcine left atrium. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(6):565-577. doi: 10.1007/s00210-012-0746-y
  355. Wiley KE, Davenport AP. Physiological antagonism of endothelin-1 in human conductance and resistance coronary artery. Br J Pharmacol. 2001;133(4):568-574. doi: 10.1038/sj.bjp.0704119
  356. Winquist RJ, Faison EP, Nutt RF. Vasodilator profile of synthetic atrial natriuretic factor. Eur J Pharmacol. 1984;102(1):169-173.
  357. Winquist RJ. The relaxant effects of atrial natriuretic factor on vascular smooth muscle. Life Sci. 1985;37(12):1081-1087.
  358. Wollert KC, Yurukova S, Kilic A, Begrow F, Fiedler B. Increased effects of C-type natriuretic peptide on contractility and calcium regulation in murine hearts overexpressing cyclic GMP-dependent protein kinase I. Br J Pharmacol. 2003;140(7):1227-1236. doi: 10.1038/sj.bjp.0705567
  359. Wu C, Wu F, Pan J, Morser J, Wu Q. Furin-mediated processing of Pro-C-type natriuretic peptide. J Biol Chem. 2003;278(28):2584-2552. doi: 10.1074/jbc.M301223200
  360. Yamamoto S, Inenaga K, Eto S, Yamashita H. Cardiovascular-related peptides influence hypothalamic neurons involved in control of body water homeostasis. Obes Res. 1995;3(Suppl 5):789S-794S.
  361. Yamamoto S, Morimoto I, Yanagihara N, Kangawa K, Inenaga K, Eto S, Yamashita H. C-type natriuretic peptide suppresses arginine-vasopressin secretion from dissociated magnocellular neurons in newborn rat supraoptic nucleus. Neurosci Lett. 1997;229(2):97-100.
  362. Yandle TG, Richards AM, Nicholls MG, Cuneo R, Espiner EA, Livesey JH. Metabolic clearance rate and plasma half-life of alpha-human atrial natriuretic peptide in man. Life Sci. 1986;38(20):1827-1833.
  363. Yasoda A, Nakao K. Translational research of C-type natriuretic peptide (CNP) into skeletal dysplasias. Endocr J. 2010;57(8): 566-659.
  364. Yoshizumi M, Tsuji H, Nishimura H, Masuda H, Kunieda Y, Kawano H, Kimura S, Sugano T, Kitamura H. Natriuretic peptides regulate the expression of tissue factor and PAI-1 in endothelial cells. Thromb Haemost. 1999;82(5):1497-1503.
  365. You H, Laychock SG. Long-term treatment with atrial natriuretic peptide inhibits ATP production and insulin secretion in rat pancreatic islets. Am J Physiol Endocrinol Metab. 2011;300(3):
  366. E435-E444. doi: 10.1152/ajpendo.00398.2010
  367. Yusof AP, Yusoff NH, Suhaimi FW, Coote JH. Role of supraspinal vasopressin neurones in the effects of atrial natriuretic peptide on sympathetic nerve activity. Auton Neurosci. 2009;148(1-2):50-54. doi: 10.1016/j.autneu.2009.03.005
  368. Zakeri R, Burnett JC, Sangaralingham SJ. Urinary C-type natriuretic peptide: An emerging biomarker for heart failure and renal remodeling. Clin Chim Acta. 2014;443:108-113. doi: 10.1016/j.cca.2014.12.009
  369. Zakeri R, Burnett JC, Sangaralingham SJ. Urinary C-type natriuretic peptide: an emerging biomarker for heart failure and renal remodeling. Clin Chim Acta. 2015;443:108-113. doi: 10.1016/j.cca.2014.12.009
  370. Zhang Q, Moalem J, Tse J, Scholz PM, Weiss HR. Effects of natriuretic peptides on ventricular myocyte contraction and role of cyclic GMP signaling. Eur J Pharmacol. 2005;510(3):209-215. doi: 10.1016/j.ejphar.2005.01.031
  371. Zhang Z, Xiao Z, Diamond SL. Shear stress induction of C-type natriuretic peptide (CNP) in endothelial cells is independent of NO autocrine signaling. Ann Biomed Eng. 1999;27(4):419-426.
  372. Zhao Z, Ma L. Regulation of axonal development by natriuretic peptide hormones. Proc Natl Acad Sci USA. 2009;106(42):18016-18021.doi: 10.1073/pnas.0906880106

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.