The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Yadgarov M.Ya.

Federal Research Clinical Center of Intensive Care and Rehabilitology

Berikashvili L.B.

Federal Research Clinical Center of Intensive Care and Rehabilitology

Yakovlev A.A.

Federal Research Clinical Center of Intensive Care and Rehabilitology

Likhvantsev V.V.

Federal Research Clinical Center of Intensive Care and Rehabilitology

Open-access databases in anesthesiology and intensive care: a systematic review and guidelines

Authors:

Yadgarov M.Ya., Berikashvili L.B., Yakovlev A.A., Likhvantsev V.V.

More about the authors

Read: 825 times


To cite this article:

Yadgarov MYa, Berikashvili LB, Yakovlev AA, Likhvantsev VV. Open-access databases in anesthesiology and intensive care: a systematic review and guidelines. Russian Journal of Anesthesiology and Reanimatology. 2025;(4):61‑71. (In Russ.)
https://doi.org/10.17116/anaesthesiology202504161

Recommended articles:
Difficult intu­bation risk asse­ssment in bariatric surgery. Russian Journal of Anesthesiology and Reanimatology. 2025;(1):62-68

References:

  1. Mao Z, Liu C, Li Q, Cui Y, Zhou F. Intelligent intensive care unit: current and future trends. Intensive Care Research. 2023;3(2):182-188.  https://doi.org/10.1007/s44231-023-00036-5
  2. Moody GB, Mark RG. A database to support development and evaluation of intelligent intensive care monitoring. Computers in Cardiology. 1996;23:657-660.  https://doi.org/10.1109/CIC.1996.542622
  3. Johnson AEWW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, Pollard TJ, Hao S, Moody B, Gow B, Lehman L wei H, Celi LA, Mark RG. MIMIC-IV, a freely accessible electronic health record dataset. Scientific Data. 2023;10(1):1.  https://doi.org/10.1038/s41597-022-01899-x
  4. Pollard TJ, Johnson AEWW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Scientific Data. 2018;5(1):1-13.  https://doi.org/10.1038/sdata.2018.178
  5. Hyland SL, Faltys M, Hüser M, Lyu X, Gumbsch T, Esteban C, Bock C, Horn M, Moor M, Rieck B, Zimmermann M, Bodenham D, Borgwardt K, Rätsch G, Merz TM. Early prediction of circulatory failure in the intensive care unit using machine learning. Nature Medicine. 2020;26(3):364-373.  https://doi.org/10.1038/s41591-020-0789-4
  6. Thoral PJ, Peppink JM, Driessen RH, Sijbrands EJG, Kompanje EJO, Kaplan L, Bailey H, Kesecioglu J, Cecconi M, Churpek M, Clermont G, Van Der Schaar M, Ercole A, Girbes ARJ, Elbers PWG. Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example. Critical Care Medicine. 2021;49(6):E563-577.  https://doi.org/10.1097/CCM.0000000000004916
  7. Chen H, Zhu Z, Zhao C, Guo Y, Chen D, Wei Y, Jin J. Central venous pressure measurement is associated with improved outcomes in septic patients: an analysis of the MIMIC-III database. Critical Care. 2020;24(1):433.  https://doi.org/10.1186/S13054-020-03109-9
  8. Robles Arévalo A, Maley JH, Baker L, da Silva Vieira SM, da Costa Sousa JM, Finkelstein S, Mateo-Collado R, Raffa JD, Celi LA, DeMichele F. Data-driven curation process for describing the blood glucose management in the intensive care unit. Scientific Data. 2021;8(1):80.  https://doi.org/10.1038/s41597-021-00864-4
  9. Liu P, Li S, Zheng T, Wu J, Fan Y, Liu X, Gong W, Xie H, Liu J, Li Y, Jiang H, Zhao F, Zhang J, Wu L, Ren H, Hong Z, Chen J, Gu G, Wang G, Zhang Z, Wu X, Zhao Y, Ren J. Subphenotyping heterogeneous patients with chronic critical illness to guide individualised fluid balance treatment using machine learning: a retrospective cohort study. EClinicalMedicine. 2023;59:101970. https://doi.org/10.1016/j.eclinm.2023.101970
  10. Tyler PD, Du H, Feng M, Bai R, Xu Z, Horowitz GL, Stone DJ, Celi LA. Assessment of Intensive Care Unit Laboratory Values That Differ From Reference Ranges and Association with Patient Mortality and Length of Stay. JAMA Network Open. 2018;1(7):e184521-e184521. https://doi.org/10.1001/JAMANETWORKOPEN.2018.4521
  11. Sun Y, He Z, Ren J, Wu Y. Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning. BMC Anesthesiology. 2023;23(1):178.  https://doi.org/10.1186/S12871-023-02138-5
  12. Likhvantsev V V, Berikashvili LB, Yadgarov MY, Yakovlev AA, Kuzovlev AN. The Tri-Steps Model of Critical Conditions in Intensive Care: Introducing a New Paradigm for Chronic Critical Illness. Journal of Clinical Medicine. 2024;13(13):3683. https://doi.org/10.3390/jcm13133683
  13. Astanin PA, Ronzhin LV, Borisov AA, Usova AV, Potapova II, Budykina AV. Knowledge Base Prototype Creating with Using Interdisciplinary Metathesaurus. Studies in Health Technology and Informatics. 2024;316:1487-491.  https://doi.org/10.3233/SHTI240695
  14. Demchenko MV, Kashirina IL, Firyulina MA. Clustering of patients’ states for the model of prescribing schemes of atherosclerosis treatment. Vestnik VGU. Seriya: sistemnyj analiz i informatsionnye tekhnologii. 2021;(2):126-137. (In Russ.). https://doi.org/10.17308/sait.2021.2/3509
  15. Sauer CM, Dam TA, Celi LA, Faltys M, de la Hoz MAA, Adhikari L, Ziesemer KA, Girbes A, Thoral PJ, Elbers P. Systematic Review and Comparison of Publicly Available ICU Data Sets-A Decision Guide for Clinicians and Data Scientists. Critical Care Medicine. 2022;50(6):e581-588.  https://doi.org/10.1097/CCM.0000000000005517
  16. Grechko AV, Yadgarov MY, Yakovlev AA, Berikashvili LB, Kuzovlev AN, Polyakov PA, Kuznetsov IV, Likhvantsev VV. Russian database of resuscitation patients-RICD. General Reanimatology. 2024;20(3):22-31. (In Russ.). https://doi.org/10.15360/1813-9779-2024-3-22-31
  17. Rodemund N, Wernly B, Jung C, Cozowicz C, Koköfer A. Harnessing big data in critical care: Exploring a new European dataset. Scientific Data. 2024;11(1):320.  https://doi.org/10.1038/s41597-024-03164-9
  18. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPAA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology. 2009;62(10):e1-34.  https://doi.org/10.1016/j.jclinepi.2009.06.006
  19. Higgins JPTT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons; 2019.
  20. Literature Map Software for Lit Reviews & Research. Accessed November 24, 2023. https://www.litmaps.com/
  21. Zeng X, Yu G, Lu Y, Tan L, Wu X, Shi S, Duan H, Shu Q, Li H. PIC, a paediatric-specific intensive care database. Scientific Data. 2020;7(1):14.  https://doi.org/10.1038/s41597-020-0355-4
  22. Hou N, Li M, He L, Xie B, Wang L, Zhang R, Yu Y, Sun X, Pan Z., Wang K. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. Journal of Translational Medicine. 2020;18(1):462.  https://doi.org/10.1186/s12967-020-02620-5
  23. Li X-D, Li M-M. A novel nomogram to predict mortality in patients with stroke: a survival analysis based on the MIMIC-III clinical database. BMC Medical Informatics and Decision Making. 2022;22(1):92.  https://doi.org/10.1186/s12911-022-01836-3
  24. Zhang Y, Hu J, Hua T, Zhang J, Zhang Z, Yang M. Development of a machine learning-based prediction model for sepsis-associated delirium in the intensive care unit. Scientific Reports. 2023;13(1):12697. https://doi.org/10.1038/s41598-023-38650-4
  25. Song Y-F, Huang H-N, Ma J-J, Xing R, Song Y-Q, Li L, Zhou J, Ou C-Q. Early prediction of sepsis in emergency department patients using various methods and scoring systems. Nursing in Critical Care. 2025;30(3):e13201. https://doi.org/10.1111/nicc.13201
  26. Zhang X, Fei N, Zhang X, Wang Q, Fang Z. Machine Learning Prediction Models for Postoperative Stroke in Elderly Patients: Analyses of the MIMIC Database. Frontiers in Aging Neuroscience. 2022;14:897611. https://doi.org/10.3389/fnagi.2022.897611
  27. Yue S, Li S, Huang X, Liu J, Hou X, Zhao Y, Niu D, Wang Y, Tan W, Wu J. Machine learning for the prediction of acute kidney injury in patients with sepsis. Journal of Translational Medicine. 2022;20(1):215.  https://doi.org/10.1186/s12967-022-03364-0
  28. Gu W-J, Duan X-J, Liu X-Z, Cen Y, Tao L-Y, Lyu J, Yin H-Y. Association of magnesium sulfate use with mortality in critically ill patients with sepsis: a retrospective propensity score-matched cohort study. British Journal of Anaesthesia. 2023;131(5):861-870.  https://doi.org/10.1016/j.bja.2023.08.005
  29. Sun W, Yan Y, Hu S, Liu B, Wang S, Yu W, Li S. The effects of midazolam or propofol plus fentanyl on ICU mortality: a retrospective study based on the MIMIC-IV database. Annals of Translational Medicine. 2022;10(4):219.  https://doi.org/10.21037/atm-22-477
  30. Yang Q, Kong T, Bao Z, Yang S, Chen X, Zheng J, Xiong X, Wen D, Zhang Z. Association between the β-blocker use and patients with sepsis: a cohort study. Frontiers in Medicine. 2023;10:1272871. https://doi.org/10.3389/fmed.2023.1272871
  31. Chan L, Beers K, Yau AA, Chauhan K, Duffy Á, Chaudhary K, Debnath N, Saha A, Pattharanitima P, Cho J, Kotanko P, Federman A, Coca SG, Van Vleck T, Nadkarni GN. Natural language processing of electronic health records is superior to billing codes to identify symptom burden in hemodialysis patients. Kidney International. 2020;97(2):383-392.  https://doi.org/10.1016/j.kint.2019.10.023
  32. Lu J, Huang Z, Wang J, Zhao X, Yang Y, Wu B, Kang Y, Xiu J, Tu J, Pan Y, Chen W, Bao K, Chen L, Liu J, Liu Y, Chen S, Fang Y, Chen K. Prevalence and Prognostic Impact of Malnutrition in Critical Patients with Acute Myocardial Infarction: Results From Chinese CIN Cohort and American MIMIC-III Database. Frontiers in Nutrition. 2022;9:890199. https://doi.org/10.3389/fnut.2022.890199
  33. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215-220.  https://doi.org/10.1161/01.cir.101.23.e215
  34. Kurniati AP, Rojas E, Hogg D, Hall G, Johnson OA. The assessment of data quality issues for process mining in healthcare using Medical Information Mart for Intensive Care III, a freely available e-health record database. Health Informatics Journal. 2019;25(4):1878-1893. https://doi.org/10.1177/1460458218810760
  35. Van den Boom W, Hoy M, Sankaran J, Liu M, Chahed H, Feng M, See KC. The Search for Optimal Oxygen Saturation Targets in Critically Ill Patients: Observational Data from Large ICU Databases. Chest. 2020;157(3):566-573.  https://doi.org/10.1016/j.chest.2019.09.015
  36. Lim L, Lee H, Jung C-W, Sim D, Borrat X, Pollard TJ, Celi LA, Mark RG, Vistisen ST, Lee H-C. INSPIRE, a publicly available research dataset for perioperative medicine. Scientific Data. 2024;11(1):655.  https://doi.org/10.1038/s41597-024-03517-4
  37. Samad M, Angel M, Rinehart J, Kanomata Y, Baldi P, Cannesson M. Medical Informatics Operating Room Vitals and Events Repository (MOVER): a public-access operating room database. JAMIA Open. 2023;6(4):ooad084. https://doi.org/10.1093/jamiaopen/ooad084

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.