The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Zhigalova M.S.

Sklifosovsky Research Institute for Emergency Care

Borozdenko D.A.

Pirogov Russian National Research Medical

Kiselev V.V.

Sklifosovsky Research Institute for Emergency Care

Yartsev P.A.

Sklifosovsky Research Institute for Emergency Care

Muslimov R.Sh.

Sklifosovsky Research Institute for Emergency Care

Modern aspects of immune pathogenesis and diagnosis of nosocomial pulmonary infections in surgical patients

Authors:

Zhigalova M.S., Borozdenko D.A., Kiselev V.V., Yartsev P.A., Muslimov R.Sh.

More about the authors

Read: 988 times


To cite this article:

Zhigalova MS, Borozdenko DA, Kiselev VV, Yartsev PA, Muslimov RSh. Modern aspects of immune pathogenesis and diagnosis of nosocomial pulmonary infections in surgical patients. Russian Journal of Anesthesiology and Reanimatology. 2024;(4):90‑96. (In Russ.)
https://doi.org/10.17116/anaesthesiology202404190

Recommended articles:

References:

  1. Nozokomial’naya pnevmoniya u vzroslykh. Rossijskie natsional’nye rekomendatsii. Gelfand BR, ed. 2-e edn. M.: Meditsinskoe informatsionnoe agentstvo; 2016. (In Russ.).
  2. Zinina EP, Tsarenko SV, Logunov DYu, Tukhvatulin AI, Magomedov MA, Babayants AV, Avramov AA. Cytokine profile of tracheobronchial aspirate and its prognostic value in neurologic intensive care patients with ventilator-associated pneumonia: a two-center observational study. Russian Journal of Anesthesiology and Reanimatology. 2022;4:48-56. (In Russ.). https://doi.org/10.17116/anaesthesiology202204148
  3. Lapin KS, Kuzkov VV, Chernova TV, Galkina TV, Kirov MYu. Impact of closed suction system on the incidence of ventilator-associated pneumonia, patient colonization and contamination of inanimate surfaces. Russian Journal of Anesthesiology and Reanimatology. 2020;4:32-41. (In Russ.). https://doi.org/10.17116/anaesthesiology202004132
  4. Jabeen M, Biswas P, Islam MT, Paul R. Antiviral Peptides in Antimicrobial Surface Coatings-From Current Techniques to Potential Applications. Viruses. 2023;15(3):640.  https://doi.org/10.3390/v15030640
  5. Brogden KA, Ackermann MR, McCray PB Jr, Huttner KM. Differences in the concentrations of small, anionic, antimicrobial peptides in bronchoalveolar lavage fluid and in respiratory epithelia of patients with and without cystic fibrosis. Infection and Immunity. 1999;67(8):4256-4259. https://doi.org/10.1128/IAI.67.8.4256-4259.1999
  6. Lehrer R, Ganz T, Selsted M. Defesins: endogenous antibiotic peptides of animal cells. Cell. 1991;64(2):229-230.  https://doi.org/10.1016/0092-8674(91)90632-9
  7. Palacios JB, Barrios-Payán J, Mata-Espinosa D, Lara-Espinosa JV, León-Contreras JC, Lushington GH, Melgarejo T, Hernández-Pando R. In Vitro, In Vivo and In Silico Assessment of the Antimicrobial and Immunomodulatory Effects of a Water Buffalo Cathelicidin (WBCATH) in Experimental Pulmonary Tuberculosis. Antibiotics (Basel). 2022;12(1):75.  https://doi.org/10.3390/antibiotics12010075
  8. Bals R, Wilson JM. Cathelicidins-a family of multifunctional antimicrobial peptides. Cellular and Molecular Life Sciences. 2003;60(4):711-720.  https://doi.org/10.1007/s00018-003-2186-9
  9. Avila EE. Functions of Antimicrobial Peptides in Vertebrates. Current Protein and Peptide Science. 2017;18(11):1098-1119. https://doi.org/10.2174/1389203717666160813162629
  10. Beisswenger C, Bals R. Antimicrobial peptides in lung inflammation. Chemical Immunology and Allergy. 2005;86:55-71.  https://doi.org/10.1159/000086651
  11. Bals R. Epithelial antimicrobial peptides in host defense against infection. Respiratory Research. 2000;1(3):141-150.  https://doi.org/10.1186/rr25
  12. Kavanagh K, Dowd S. Histatins: antimicrobial peptides with therapeutic potential. Journal of Pharmacy and Pharmacology. 2004;56(3):285-289.  https://doi.org/10.1211/0022357022971
  13. Vavilova TP, Derkacheva NI, Ostrovskaya IG. Antimicrobial peptides — the multifunctional protection of the tissues of the oral cavity. Rossijskaja stomatologija. 2015;8(3):3-12. (In Russ.). https://doi.org/10.17116/rosstomat2015833-12
  14. Brauburger K, Hume AJ, Mühlberger E, Olejnik J. Forty-five years of Marburg virus research. Viruses. 2012;4(10):1878-1927. https://doi.org/10.3390/v4101878
  15. Makowski M, Silva ÍC, Pais do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics. 2019;11(11):588.  https://doi.org/10.3390/pharmaceutics11110588
  16. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nature Reviews. Microbiology. 2016;14(1):20-32.  https://doi.org/10.1038/nrmicro3552
  17. Ahlawat S, Asha, Sharma KK. Gut-organ axis: a microbial outreach and networking. Letters in Applied Microbiology. 2021;72(6):636-668.  https://doi.org/10.1111/lam.13333
  18. Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, Huffnagle GB. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nature Microbiology. 2016;18(1):16113. https://doi.org/10.1038/nmicrobiol.2016.113
  19. Bradley KC, Finsterbusch K, Schnepf D, Crotta S, Llorian M, Davidson S, Fuchs SY, Staeheli P, Wack A. Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Reports. 2019;28(1):245-256.e4.  https://doi.org/10.1016/j.celrep.2019.05.105
  20. Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C, Lienenklaus S, Weiss S, Staeheli P, Aichele P, Diefenbach A. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity. 2012;37(1):171-186.  https://doi.org/10.1016/j.immuni.2012.05.020
  21. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(13):5354-5359. https://doi.org/10.1073/pnas.1019378108
  22. Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Death and Disease. 2020;11(9):776.  https://doi.org/10.1038/s41419-020-02985-x
  23. Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, Paley MA, Antenus M, Williams KL, Erikson J, Wherry EJ, Artis D. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 2012;37(1):158-170.  https://doi.org/10.1016/j.immuni.2012.04.011
  24. Stefan KL, Kim MV, Iwasaki A, Kasper DL. Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell. 2020;183(5):1312-1324.e10.  https://doi.org/10.1016/j.cell.2020.10.047
  25. Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F. Modulation of the immune response by Middle East respiratory syndrome coronavirus. Journal of Cellular Physiology. 2019;234(3):2143-2151. https://doi.org/10.1002/jcp.27155
  26. Villena J, Kitazawa H. The Modulation of Mucosal Antiviral Immunity by Immunobiotics: Could They Offer Any Benefit in the SARS-CoV-2 Pandemic? Frontiers in Physiology. 2020;11:699.  https://doi.org/10.3389/fphys.2020.00699
  27. Kitazawa H, Villena J. Modulation of Respiratory TLR3-Anti-Viral Response by Probiotic Microorganisms: Lessons Learned from Lactobacillus rhamnosus CRL1505. Frontiers in Immunology. 2014;5:201.  https://doi.org/10.3389/fimmu.2014.00201
  28. Zelaya H, Alvarez S, Kitazawa H, Villena J. Respiratory Antiviral Immunity and Immunobiotics: Beneficial Effects on Inflammation-Coagulation Interaction during Influenza Virus Infection. Frontiers in Immunology. 2016;7:633.  https://doi.org/10.3389/fimmu.2016.00633
  29. Zhang D, Li S, Wang N, Tan H-Y, Zhang Z, Feng Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Frontiers in Microbiology. 2020;11:301.  https://doi.org/10.3389/fmicb.2020.00301
  30. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host and Microbe. 2015;17(5):662-671.  https://doi.org/10.1016/j.chom.2015.03.005
  31. Anand S, Mande SS. Diet, Microbiota and Gut-Lung Connection. Frontiers in Microbiology. 2018;9:2147. https://doi.org/10.3389/fmicb.2018.02147
  32. Taranushenko TE. Unity of bowel-lung axis and the role of beneficial microbiota in anti-infectious profection. RMZh. Mat i ditya. 2021;4(4):355-361. (In Russ.). https://doi.org/10.32364/2618-8430-2021-4-4-355-361
  33. Chernevskaya EA, Beloborodova NV. Gut Microbiome in Critical Illness (Review). General Reanimatology. 2018;14(5):96-116. (In Russ.). https://doi.org/10.15360/1813-9779-2018-5-96-119
  34. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clinical Chemistry and Laboratory Medicine. 2020;58(7):1021-1028. https://doi.org/10.1515/cclm-2020-0369
  35. Grayson MH, Camarda LE, Hussain SA, Zemple SJ, Hayward M, Lam V, Hunter DA, Santoro JL, Rohlfing M, Cheung DS, Salzman NH. Intestinal Microbiota Disruption Reduces Regulatory T Cells and Increases Respiratory Viral Infection Mortality Through Increased IFNγ Production. Frontiers in Immunology. 2018;9:1587. https://doi.org/10.3389/fimmu.2018.01587
  36. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Frontiers in Immunology. 2019; 10:1462. https://doi.org/10.3389/fimmu.2019.01462
  37. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274-288.  https://doi.org/10.1016/j.immuni.2014.01.006
  38. Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. The Journal of Clinical Investigation. 2019;129(7):2619-2628. https://doi.org/10.1172/JCI124615
  39. Byrne AJ, Mathie SA, Gregory LG, Lloyd CM. Pulmonary macrophages: key players in the innate defence of the airways. Thorax. 2015;70(12): 1189-1196. https://doi.org/10.1136/thoraxjnl-2015-207020
  40. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology. 2008;8(12):958-969.  https://doi.org/10.1038/nri2448
  41. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312-1326. https://doi.org/10.1016/j.cell.2014.11.018
  42. Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, Chen CI, Anekalla KR, Joshi N, Williams KJN, Abdala-Valencia H, Yacoub TJ, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Gates K, Lam AP, Nicholson TT, Homan PJ, Soberanes S, Dominguez S, Morgan VK, Saber R, Shaffer A, Hinchcliff M, Marshall SA, Bharat A, Berdnikovs S, Bhorade SM, Bartom ET, Morimoto RI, Balch WE, Sznajder JI, Chandel NS, Mutlu GM, Jain M, Gottardi CJ, Singer BD, Ridge KM, Bagheri N, Shilatifard A, Budinger GRS, Perlman H. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. The Journal of Experimental Medicine. 2017;214(8):2387-2404. https://doi.org/10.1084/jem.20162152
  43. Eguíluz-Gracia I, Schultz HH, Sikkeland LI, Danilova E, Holm AM, Pronk CJ, Agace WW, Iversen M, Andersen C, Jahnsen FL, Baekkevold ES. Long-term persistence of human donor alveolar macrophages in lung transplant recipients. Thorax. 2016;71(11):1006-1011. https://doi.org/10.1136/thoraxjnl-2016-208292
  44. Divangahi M, King IL, Pernet E. Alveolar macrophages and type I IFN in airway homeostasis and immunity. Trends in Immunology. 2015;36(5): 307-314.  https://doi.org/10.1016/j.it.2015.03.005
  45. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450-462.  https://doi.org/10.1016/j.immuni.2016.02.015
  46. Zvyagin AA, Bavykina IA, Nastausheva TL, Bavykin DV. Intestinal Fatty Acid Binding Protein as the Promising Marker of Small Intestine Permeability. Rossijskij vestnik perinatologii i pediatrii. 2020;65:(6):29-33. (In Russ.). https://doi.org/10.21508/1027-4065-2020-65-6-29-33
  47. Li IA, Noskova KK, Varvanina GG, Tkachenko EV. The fatty acids binding protein (I-FABP) — the diagnostic marker of damage of the intestine. Laboratornaya sluzhba. 2015;14(1):26-29. (In Russ.). https://doi.org/10.17116/labs20154126-29
  48. Liang X, Gupta K, Quintero JR, Cernadas M, Kobzik L, Christou H, Pier GB, Owen CA, Çataltepe S. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia. FASEB Journal. 2018;33(3):3562-3574. https://doi.org/10.1096/fj.201802002R
  49. Makowski L, Brittingham KC, Reynolds JM, Suttles J, Hotamisligil GS. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. The Journal of Biological Chemistry. 2005;280(13):12888-12895. https://doi.org/10.1074/jbc.M413788200
  50. Sibila O, Garcia-Bellmunt L, Giner J, Rodrigo-Troyano A, Suarez-Cuartin G, Torrego A, Castillo D, Solanes I, Mateus EF, Vidal S, Sanchez-Reus F, Sala E, Cosio BG, Restrepo MI, Anzueto A, Chalmers JD, Plaza V. Airway Mucin 2 is decreased in patients with severe chronic obstructive pulmonary disease with bacterial colonization. Annals of the American Thoracic Society. 2016;13(5):636-642.  https://doi.org/10.1513/AnnalsATS.201512-797OC
  51. Persson LJ, Aanerud M, Hardie JA, Miodini Nilsen R, Bakke PS, Eagan TM, Hiemstra PS. Antimicrobial peptide levels are linked to airway inflammation, bacterial colonisation and exacerbations in chronic obstructive pulmonary disease. The European Respiratory Journal. 2017;49(3):1601328. https://doi.org/10.1183/13993003.01328-2016
  52. Perea L, Rodrigo-Troyano A, Cantó E, Domínguez-Álvarez M, Giner J, Sanchez-Reus F, Villar-García J, Quero S, García-Núñez M, Marín A, Monsó E, Faner R, Agustí A, Vidal S, Sibila O. Reduced airway levels of fatty-acid binding protein 4 in COPD: relationship with airway infection and disease severity. Respiratory Research. 2020;21(1):21.  https://doi.org/10.1186/s12931-020-1278-5
  53. Hiemstra PS. Altered macrophage function in chronic obstructive pulmonary disease. Annals of the American Thoracic Society. 2013;10(Suppl):S180-S185. https://doi.org/10.1513/AnnalsATS.201305-123AW
  54. Kohno N, Kyoizumi S, Awaya Y, Fukuhara H, Yamakido M, Akiyama M. New serum indicator of interstitial pneumonitis activity. Sialylated carbohydrate antigen KL-6. Chest. 1989;96(1):68-73.  https://doi.org/10.1378/chest.96.1.68
  55. Simpson JK, Maher TM, Bentley J, Braybrooke R, Carter P, Costa MJ, Duggan A, Fahy WA, Marshall RP, Oballa E, Saini G, Jenkins RG. CYFRA-21-1 as a biomarker with prognostic potential in idiopathic pulmonary fibrosis: an analysis of the profile cohort. American Journal of Respiratory and Critical Care Medicine. 2017;195:A6791.
  56. Yamane K, Ihn H, Kubo M, Yazawa N, Kikuchi K, Soma Y, Tamaki K. Serum levels of KL-6 as a useful marker for evaluating pulmonary fibrosis in patients with systemic sclerosis. The Journal of Rheumatology. 2000;27(4): 930-934. 
  57. Yamakawa H, Hagiwara E, Kitamura H, Yamanaka Y, Ikeda S, Sekine A, Baba T, Okudela K, Iwasawa T, Takemura T, Kuwano K, Ogura T. Serum KL-6 and surfactant protein-D as monitoring and predictive markers of interstitial lung disease in patients with systemic sclerosis and mixed connective tissue disease. Journal of Thoracic Disease. 2017;9(2):362-371.  https://doi.org/10.21037/jtd.2017.02.48
  58. Hagmeyer L, Randerath W. Smoking-related interstitial lung disease. Deutsches Ärzteblatt International. 2015;112(4):43-50.  https://doi.org/10.3238/arztebl.2015.0043
  59. Lynch DA, Godwin JD, Safrin S, Starko KM, Hormel P, Brown KK, Raghu G, King TE Jr, Bradford WZ, Schwartz DA, Richard Webb W; Idiopathic Pulmonary Fibrosis Study Group. High-resolution computed tomography in idiopathic pulmonary fibrosis: diagnosis and prognosis. American Journal of Respiratory and Critical Care Medicine. 2005;172(4):488-493.  https://doi.org/10.1164/rccm.200412-1756OC
  60. Samsonova MV, Mikhaylichenko KYu, Chernyaev AL, Chernyak AV, Karchevskaya NA. Smoke-related interstitial fibrosis — a case report. Pul’monologiya. 2022;32(4):626-630. (In Russ.). https://doi.org/10.18093/0869-0189-2022-32-4-626-630

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.