The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Dmitriev A.Yu.

Sklifosovsky Research Institute for Emergency;
Yevdokimov Moscow State University of Medicine and Dentistry

Dashyan V.G.

Sklifosovsky Research Institute for Emergency;
Yevdokimov Moscow State University of Medicine and Dentistry

Intraoperative magnetic resonance imaging in surgery of brain gliomas

Authors:

Dmitriev A.Yu., Dashyan V.G.

More about the authors

Journal: Burdenko's Journal of Neurosurgery. 2022;86(1): 121‑127

Read: 2904 times


To cite this article:

Dmitriev AYu, Dashyan VG. Intraoperative magnetic resonance imaging in surgery of brain gliomas. Burdenko's Journal of Neurosurgery. 2022;86(1):121‑127. (In Russ., In Engl.)
https://doi.org/10.17116/neiro202286011121

Recommended articles:
Anti­depressants as addi­tional drugs for human brain gliomas. Burdenko's Journal of Neurosurgery. 2024;(6):97-102
Glymphatic system in health and disease: a narrative review. Burdenko's Journal of Neurosurgery. 2025;(4):112-118
Machine learning models for brain tumors differential diagnosis. Russian Journal of Preventive Medi­cine. 2025;(9):87-93

References:

  1. Seifert V, Gasser T, Senft C. Low field intraoperative MRI in glioma surgery. Acta Neurochirurgica. Supplement. 2011;109:35-41.  https://doi.org/10.1007/978-3-211-99651-5_6
  2. Zimmermann M, Seifert V, Trantakis C, Kuhnel K, Raabe A, Schneider JP, Dietrich J, Schmidt F. Open MRI-guided microsurgery of intracranial tumours. Preliminary experience using a vertical open MRI-scanner. Acta Neurochirurgica. 2000;142(2):177-186.  https://doi.org/10.1007/s007010050021
  3. Mohyeldin A, Lonser RR, Elder JB. Real-time magnetic resonance imaging-guided frameless stereotactic brain biopsy: technical note. Journal of Neurosurgery. 2016;124(4):1039-1046. https://doi.org/10.3171/2015.5.JNS1589
  4. Rubino GJ, Farahani K, McGill D, Van De Wiele B, Villablanca JP, Wang-Mathieson A. Magnetic resonance imaging-guided neurosurgery in the magnetic fringe fields: the next step in neuronavigation. Neurosurgery. 2000;46(3):643-653.  https://doi.org/10.1097/00006123-200003000-00023
  5. Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery. 2001;48(4):799-807.  https://doi.org/10.1097/00006123-200104000-00021
  6. Ntoukas V, Krishnan R, Seifert V. The new generation PoleStar N20 for conventional neurosurgical operating rooms: a preliminary report. Neurosurgery. 2008;62(suppl 1):82-90.  https://doi.org/10.1227/01.NEU.0000297016.81210.7E
  7. Senft C, Seifert V, Hermann E, Franz K, Gasser T. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery. Neurosurgery. 2008;63(suppl 4):257-267.  https://doi.org/10.1227/01.NEU.0000313624.77452.3C
  8. Pamir MN, Peker S, Ozek MM, Dinçer A. Intraoperative MR imaging: preliminary results with 3 tesla MR system. Acta Neurochirurgica. Supplement. 2006;98:97-100.  https://doi.org/10.1007/978-3-211-33303-7_13
  9. Chicoine MR, Lim CCH, Evans JA, Singla A, Zipfel GJ, Rich KM, Dowling JL, Leonard JR, Smyth MD, Santiago P, Leuthardt EC, Limbrick DD, Dacey RG. Implementation and preliminary clinical experience with the use of ceiling mounted mobile high field intraoperative magnetic resonance imaging between two operating rooms. Acta Neurochirurgica. Supplement. 2011;109:97-102.  https://doi.org/10.1007/978-3-211-99651-5_15
  10. Lang MJ, Kelly JJ, Sutherland GR. A moveable 3-tesla intraoperative magnetic resonance imaging system. Neurosurgery. 2011;68(Suppl 1):168-179.  https://doi.org/10.1227/NEU.0b013e3182045803
  11. Coburger J, Merkel A, Scherer M, Schwartz F, Gessler F, Roder C, Pala A, König R, Bullinger L, Nagel G, Jungk C, Bisdas S, Nabavi A, Ganslandt O, Seifert V, Tatagiba M, Senft C, Mehdorn M, Unterberg AW, Rossler K, Wirtz CR. Low-grade glioma surgery in intraoperative magnetic resonance imaging: results of a multicenter retrospective assessment of the german study group for intraoperative magnetic resonance imaging. Neurosurgery. 2016;78(6): 775-786.  https://doi.org/10.1227/NEU.0000000000001081
  12. Lu Y, Yeung C, Radmanesh A, Wiemann R, Black PM, Golby AJ. Comparative effectiveness of frame-based, frameless, and intraoperative magnetic resonance imagingeguided brain biopsy techniques. World Neurosurgery. 2015;83(3):261-268.  https://doi.org/10.1016/j.wneu.2014.07.043
  13. Burkhardt JK, Neidert MC, Woernle CM, Bozinov O, Bernays RL. Intraoperative low-field MR-guided frameless stereotactic biopsy for intracerebral lesions. Acta Neurochirurgica. 2013;155(4):721-726.  https://doi.org/10.1007/s00701-013-1639-7
  14. Scheer JK, Hamelin T, Chang L, Lemkuil B, Carter BS, Chen CC. Real-time magnetic resonance imaging-guided biopsy using SmartFrame stereotaxis in the setting of a conventional diagnostic magnetic resonance imaging suite. Operative Neurosurgery. 2017;13(3):329-337.  https://doi.org/10.1093/ons/opw035
  15. Masuda Y, Akutsu H, Ishikawa E, Matsuda M, Masumoto T, Hiyama T, Yamamoto T, Kohzuki H, Takano S, Matsumura A. Evaluation of the extent of resection and detection of ischemic lesions with intraoperative MRI in glioma surgery: is intraoperative MRI superior to early postoperative MRI? Journal of Neurosurgery. 2019;131(1):209-216.  https://doi.org/10.3171/2018.3.JNS172516
  16. Ille S, Schroeder A, Wagner A, Negwer C, Kreiser K, Meyer B, Krieg SM. Intraoperative MRI-based elastic fusion for anatomically accurate tractography of the corticospinal tract: correlation with intraoperative neuromonitoring and clinical status. Neurosurgical Focus. 2021;50(1):E9.  https://doi.org/10.3171/2020.10.FOCUS20774
  17. Sun GC, Wang F, Chen XL, Yu XG, Ma XD, Zhou DB, Zhu RY, Xu BN. Impact of virtual and augmented reality based on intraoperative magnetic resonance imaging and functional neuronavigation in glioma surgery involving eloquent areas. World Neurosurgery. 2016;96:375-382.  https://doi.org/10.1016/j.wneu.2016.07.107
  18. Leroy HA, Delmaire C, Le Rhun E, Drumez E, Lejeune JP, Reyns N. High-field intraoperative MRI and glioma surgery: results after the first 100 consecutive patients. Acta Neurochirurgica. 2019;161(7):1467-1474. https://doi.org/10.1007/s00701-019-03920-6
  19. Haydon DH, Chicoine MR, Dacey RG. The impact of high-field-strength intraoperative magnetic resonance imaging on brain tumor management. Neurosurgery. 2013;60(suppl 1):92-97.  https://doi.org/10.1227/01.neu.0000430321.39870.be
  20. Akbari SHA, Sylvester PT, Kulwin C, Shah MV, Somasundaram A, Kamath AA, Beaumont TL, Rich KM, Chicoine MR. Initial experience using intraoperative magnetic resonance imaging during a trans-sulcal tubular retractor approach for the resection of deep-seated brain tumors: a case series. Operative Neurosurgery. 2019;16(3):292-301.  https://doi.org/10.1093/ons/opy108
  21. Fukui A, Muragaki Y, Saito T, Maruyama T, Nitta M, Ikuta S, Kawamata T. Volumetric analysis using low-field intraoperative magnetic resonance imaging for 168 newly diagnosed supratentorial glioblastomas: effects of extent of resection and residual tumor volume on survival and recurrence. World Neurosurgery. 2017;98:73-80.  https://doi.org/10.1016/j.wneu.2016.10.109
  22. Olubiyi OI, Ozdemir A, Incekara F, Tie Y, Dolati P, Hsu L, Santagata S, Chen Z, Rigolo L, Golby AJ. Intraoperative magnetic resonance imaging in intracranial glioma resection: a single-center, retrospective blinded volumetric study. World Neurosurgery. 2015;84(2):528-536.  https://doi.org/10.1016/j.wneu.2015.04.044
  23. Zhuang DX, Wu JS, Yao CJ, Qiu TM, Lu JF, Zhu FP, Xu G, Zhu W, Zhou LF. Intraoperative multi-information-guided resection of dominant-sided insular gliomas in a 3-T intraoperative magnetic resonance imaging integrated neurosurgical suite. World Neurosurgery. 2016;89:84-92.  https://doi.org/10.1016/j.wneu.2016.01.067
  24. Ghinda D, Zhang N, Lu J, Yao CJ, Yuan S, Wu JS. Contribution of combined intraoperative electrophysiological investigation with 3-T intraoperative MRI for awake cerebral glioma surgery: comprehensive review of the clinical implications and radiological outcomes. Neurosurgical Focus. 2016;40(3):E14.  https://doi.org/10.3171/2015.12.FOCUS15572
  25. Scherer M, Jungk C, Younsi A, Kickingereder P, Muller S, Unterberg A. Factors triggering an additional resection and determining residual tumor volume on intraoperative MRI: analysis from a prospective single-center registry of supratentorial gliomas. Neurosurgical Focus. 2016;40(3):E4.  https://doi.org/10.3171/2015.11.FOCUS15542
  26. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. The Lancet. Oncology. 2011;12(11):997-1003. https://doi.org/10.1016/S1470-2045(11)70196-6
  27. Wu JS, Gong X, Song YY, Zhuang DX, Yao CJ, Qiu TM, Lu JF, Zhang J, Zhu W, Mao Y, Zhou LF. 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial. Neurosurgery. 2014;61(Suppl 1):145-154.  https://doi.org/10.1227/NEU.0000000000000372
  28. Li P, Qian R, Niu C, Fu X. Impact of intraoperative MRI-guided resection on resection and survival in patient with gliomas: a meta-analysis. Current Medical Research and Opinion. 2017;33(4):621-630.  https://doi.org/10.1080/03007995.2016.1275935
  29. Nimsky C, Ganslandt O, Buchfelder M, Fahlbusch R. Glioma surgery evaluated by intraoperative low-field magnetic resonance imaging. Acta Neurochirurgica. Supplement. 2002;85:55-63.  https://doi.org/10.1007/978-3-7091-6043-5_8
  30. Pamir MN, Ozduman K, Dincer A, Yildiz E, Peker S, Ozek MM. First intraoperative, shared-resource, ultrahigh-field 3-Tesla magnetic resonance imaging system and its application in low-grade glioma resection. Journal of Neurosurgery. 2010;112(1):57-69.  https://doi.org/10.3171/2009.3.JNS081139
  31. Nimsky C, Kuhnt D, Ganslandt O, Buchfelder M. Multimodal navigation integrated with imaging. Acta Neurochirurgica. Supplement. 2011;109:207-213.  https://doi.org/10.1007/978-3-211-99651-5_32
  32. Hauser SB, Kockro RA, Actor B, Sarnthein J, Bernays RL. Combining 5-aminolevulinic acid fluorescence and intraoperative magnetic resonance imaging in glioblastoma surgery: a histology-based evaluation. Neurosurgery. 2016;78(4):475-483.  https://doi.org/10.1227/NEU.0000000000001035
  33. Pamir MN, Ozduman K, Dincer A, Yildiz E, Sav A, Dincer A. Intraoperative magnetic resonance spectroscopy for identifcation of residual tumor during low-grade glioma surgery. Journal of Neurosurgery. 2013;118(6):1191-1198. https://doi.org/10.3171/2013.1.JNS111561
  34. Roder C, Bender B, Ritz R, Honegger J, Feigl G, Naegele T, Tatagiba MS, Ernemann U, Bisdas S. Intraoperative visualization of residual tumor: the role of perfusion-weighted imaging in a high-field intraoperative magnetic resonance scanner. Operative Neurosurgery. 2013;72(Suppl 2):151-158.  https://doi.org/10.1227/NEU.0b013e318277c606
  35. Ozduman K, Yildiz E, Dincer A, Sav A, Pamir MN. Using intraoperative dynamic contrast-enhanced T1-weighted MRI to identify residual tumor in glioblastoma surgery. Journal of Neurosurgery. 2014;120(1):60-66.  https://doi.org/10.3171/2013.9.JNS121924

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.