The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Dudchenko N.G.

Russian Medical Academy of Continuous Professional Education

Chimagomedova A.Sh.

Russian Medical Academy of Continuous Professional Education

Vasenina E.E.

Russian Medical Academy of Continuous Professional Education

Levin O.S.

Russian Medical Academy of Continuous Professional Education

Glymphatic system

Authors:

Dudchenko N.G., Chimagomedova A.Sh., Vasenina E.E., Levin O.S.

More about the authors

Read: 4972 times


To cite this article:

Dudchenko NG, Chimagomedova ASh, Vasenina EE, Levin OS. Glymphatic system. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(7):20‑26. (In Russ.)
https://doi.org/10.17116/jnevro202212207120

Recommended articles:
Diagnosis of neuroinfections in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):51-59
Quantitative analysis of cere­brospinal fluid flow in multiple scle­rosis patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(7-2):45-50
Eculizumab in the treatment of neuromyelitis optica spectrum diso­rder. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(7-2):60-65
Glymphatic system in health and disease: a narrative review. Burdenko's Journal of Neurosurgery. 2025;(4):112-118

References:

  1. Ikomi F, Kawai Y, Ohhashi T. Recent Advance in Lymph Dynamic Analysis in Lymphatics and Lymph Nodes. Annals of Vascular Diseases. 2012;5(3):258-568.  https://doi.org/10.3400/avd.ra.12.00046
  2. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochemistry International. 2004;45(4):545-552.  https://doi.org/10.1016/j.neuint.2003.11.006
  3. Cserr HF, Cooper DN, Suri PK, et al. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. American Journal of Physiology-Renal Physiology. 1981;240(4):319-328.  https://doi.org/10.1152/ajprenal.1981.240.4.f319
  4. Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. American Journal of Physiology-Renal Physiology.1981;240(4):329-336.  https://doi.org/10.1152/ajprenal.1981.240.4.f329
  5. Bradbury MW, Westrop RJ. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. The Journal of Physiology. 1983;339(1):519-534.  https://doi.org/10.1113/jphysiol.1983.sp014731
  6. Iliff JJ, Wang M, Liao Y, et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid. Science Translational Medicine. 2012;4(147):147ra111-147ra111. https://doi.org/10.1126/scitranslmed.3003748
  7. Louveau A, Harris TH, Kipnis J. Revisiting the Mechanisms of CNS Immune Privilege. Trends in Immunology. 2015;36(10):569-577.  https://doi.org/10.1016/j.it.2015.08.006
  8. Caversaccio M, Peschel O, Arnold W. Connections between the cerebrospinal fluid space and the lymphatic system of the head and neck in humans. Intracranial and Intralabyrinthine Fluids. 1996;2(19):123-128.  https://doi.org/10.1007/978-3-642-80163-1_15
  9. Damkier HH, Brown PD, Praetorius J. Epithelial Pathways in Choroid Plexus Electrolyte Transport. Physiology. 2010;25(4):239-249.  https://doi.org/10.1152/physiol.00011.2010
  10. Bulat M, Klarica M. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Research Reviews. 2011;65(2):99-112.  https://doi.org/10.1016/j.brainresrev.2010.08.002
  11. Crone C. The Blood-Brain Barrier as a Tight Epithelium: Where Is Information Lacking? Annals of the New York Academy of Sciences. 1986;481(1):174-185.  https://doi.org/10.1111/j.1749-6632.1986.tb27149.x
  12. Kimelberg HK. Water homeostasis in the brain: Basic concepts. Neuroscience. 2004;129(4):851-860.  https://doi.org/10.1016/j.neuroscience.2004.07.033
  13. Milhorat TH, Hammock MK, Fenstermacher JD, et al. Cerebrospinal Fluid Production by the Choroid Plexus and Brain. Science. 1971;173(3994):330-332.  https://doi.org/10.1126/science.173.3994.330
  14. Rapoport SI. A mathematical model for vasogenic brain edema. Journal of Theoretical Biology. 1978;74(3):439-467.  https://doi.org/10.1016/0022-5193(78)90224-2
  15. Cutler RWP, Page L, Galicich J, et al Formation and absorption of cerebrospinal flui in man. Brain. 1968;91(4):707-720.  https://doi.org/10.1093/brain/91.4.707
  16. Rubin RC, Henderson ES, Ommaya AK, et al. The Production of Cerebrospinal Fluid in Man and Its Modification by Acetazolamide. Journal of Neurosurgery. 1966;25(4):430-436.  https://doi.org/10.3171/jns.1966.25.4.0430
  17. Schroth G, Klose U. Cerebrospinal fluid flow. Neuroradiology. 1992;35(1):10-15.  https://doi.org/10.1007/bf00588271
  18. Johanson CE, Duncan JA, Klinge PM, et al. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Research. 2008;5(1):10.  https://doi.org/10.1186/1743-8454-5-10
  19. Nilsson C, Stahlberg F, Thomsen C, et al. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1992;262(1):20-24.  https://doi.org/10.1152/ajpregu.1992.262.1.r20
  20. Lindvall M, Owman C. Autonomic Nerves in the Mammalian Choroid Plexus and Their Influence on the Formation of Cerebrospinal Fluid. Journal of Cerebral Blood Flow & Metabolism. 1981;1(3):245-266.  https://doi.org/10.1038/jcbfm.1981.30
  21. Damkier HH, Brown PD, Praetorius J. Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiological Reviews. 2013;93(4):1847-1892. https://doi.org/10.1152/physrev.00004.2013
  22. Bonnet MH, Arand DL. Heart rate variability: sleep stage, time of night, and arousal influences. Electroencephalography and Clinical Neurophysiology. 1997;102(5):390-396.  https://doi.org/10.1016/s0921-884x(96)96070-1
  23. Friese S, Hamhaber U, Erb M, et al. The Influence of Pulse and Respiration on Spinal Cerebrospinal Fluid Pulsation. Investigative Radiology. 2004;39(2):120-130.  https://doi.org/10.1097/01.rli.0000112089.66448.bd
  24. Wagshul ME, Eide PK, Madsen JR. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids and Barriers of the CNS. 2011;8(1):5.  https://doi.org/10.1186/2045-8118-8-5
  25. Weller RO. Microscopic morphology and histology of the human meninges. Morphologie. 2005;89(284):22-34.  https://doi.org/10.1016/s1286-0115(05)83235-7
  26. Bakker ENTP, Bacskai BJ, Arbel-Ornath M, et al. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases. Cellular and Molecular Neurobiology. 2016;36(2):181-194.  https://doi.org/10.1007/s10571-015-0273-8
  27. Weller RO, Djuanda E, Yow H-Y, et al. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathologica. 2008;117(1):1-14.  https://doi.org/10.1007/s00401-008-0457-0
  28. Jessen NA, Munk ASF, Lundgaard I, et al. The Glymphatic System: A Beginner’s Guide. Neurochemical Research. 2015;40(12):2583-2599. https://doi.org/10.1007/s11064-015-1581-6
  29. Bedussi B, Almasian M, de Vos J, et al. Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fluid flow. Journal of Cerebral Blood Flow & Metabolism. 2017;38(4):719-726.  https://doi.org/10.1177/0271678x17737984
  30. Bedussi B, van Lier MGJTB, Bartstra JW, et al. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids and Barriers of the CNS. 2015;12(1):34-39.  https://doi.org/10.1186/s12987-015-0019-5
  31. Morris AWJ, Sharp MM, Albargothy NJ, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathologica. 2016;131(5):725-736.  https://doi.org/10.1007/s00401-016-1555-z
  32. Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. Journal of Clinical Investigation. 2013;123(3):1299-1309. https://doi.org/10.1172/jci67677
  33. Hubbard JA, Hsu MS, Seldin MM, et al. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain. ASN Neuro. 2015;7(5):175909141560548. https://doi.org/10.1177/1759091415605486
  34. Tarasoff-Conway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain — implications for Alzheimer disease. Nature Reviews. 2015;11(8):457-470.  https://doi.org/10.1038/nrneurol.2015.119
  35. Louveau A, Da Mesquita S, Kipnis J. Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer’s Disease? Neuron. 2016;91(5):957-973.  https://doi.org/10.1016/j.neuron.2016.08.027
  36. Lee H, Xie L, Yu M, et al. The Effect of Body Posture on Brain Glymphatic Transport. Journal of Neuroscience. 2015;35(31):11034-11044. https://doi.org/10.1523/jneurosci.1625-15.2015
  37. Kiviniemi V, Wang X, Korhonen V, et al. Ultra-fast magnetic resonance encephalography of physiological brain activity — Glymphatic pulsation mechanisms? Journal of Cerebral Blood Flow & Metabolism. 2015;36(6):1033-1045. https://doi.org/10.1177/0271678x15622047
  38. Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids and Barriers of the CNS. 2014;11(1):26.  https://doi.org/10.1186/2045-8118-11-26
  39. Asgari M, de Zélicourt D, Kurtcuoglu V. Glymphatic solute transport does not require bulk flow. Scientific Reports. 2016;6(1):23-28.  https://doi.org/10.1038/srep38635
  40. Bradbury MW, Cole DF. The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. The Journal of Physiology. 1980;299(1):353-365.  https://doi.org/10.1113/jphysiol.1980.sp013129
  41. Guseva MR, Beslaneeva MA, Mishchenko NV, Khurai AR. penetration of the antioxidant drug Histochrome through the hematothalmic barrier (experimental study). Vestnik ofthalmology. 2007;123(6):38-40. (In Russ.).
  42. Dixon WE, Halliburton WD. The cerebro-spinal fluid. The Journal of Physiology. 1914;48(2-3):128-153.  https://doi.org/10.1113/jphysiol.1914.sp001652
  43. Matsumae M, Sato O, Hirayama A, et al. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System. Neurologia medico-chirurgica. 2016;56(7):416-441.  https://doi.org/10.2176/nmc.ra.2016-0020
  44. Achariyar TM, Li B, Peng W, et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Molecular Neurodegeneration. 2016;11(1):12-18.  https://doi.org/10.1186/s13024-016-0138-8
  45. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Annals of Neurology. 2014;76(6):845-861.  https://doi.org/10.1002/ana.24271
  46. Xie L, Kang H, Xu Q, et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science. 2013;342(6156):373-377.  https://doi.org/10.1126/science.1241224
  47. Xia M, Yang L, Sun G, Qi S, Li B. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology. 2016;234(3):365-379.  https://doi.org/10.1007/s00213-016-4473-9
  48. Ju Y-ES, Finn MB, Sutphen CL, et al. Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid. Annals of Neurology. 2016;80(1):154-159.  https://doi.org/10.1002/ana.24672
  49. He X, Liu D, Zhang Q, et al. Voluntary Exercise Promotes Glymphatic Clearance of Amyloid Beta and Reduces the Activation of Astrocytes and Microglia in Aged Mice. Neuroscience. 2017;10:23-27.  https://doi.org/10.3389/fnmol.2017.00144
  50. Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochimica et Biophysica Acta (BBA). Molecular Basis of Disease. 2016;1862(3):442-451.  https://doi.org/10.1016/j.bbadis.2015.10.014
  51. Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiology of Disease. 2016;93:215-225.  https://doi.org/10.1016/j.nbd.2016.05.015
  52. Yang L, Kress BT, Weber HJ, et al. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. Journal of Translational Medicine. 2013;11(1):107.  https://doi.org/10.1186/1479-5876-11-107
  53. Lundgaard I, Lu ML, Yang E, et al. Glymphatic clearance controls state-dependent changes in brain lactate concentration. Journal of Cerebral Blood Flow & Metabolism. 2016;37(6):2112-2124. https://doi.org/10.1177/0271678x16661202
  54. Iliff JJ, Chen MJ, Plog BA, et al. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury. The Journal of Neuroscience. 2014;34(49):16180-16193. https://doi.org/10.1523/jneurosci.3020-14.2014
  55. Valdinocci D, Radford R, Siow S, et al. Potential Modes of Intercellular α-Synuclein Transmission. International Journal of Molecular Sciences. 2017;18(2):469.  https://doi.org/10.3390/ijms18020469
  56. Rennels ML, Gregory TF, Blaumanis OR, et al. Evidence for a «Paravascular» fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Research. 1985;326(1):47-63.  https://doi.org/10.1016/0006-8993(85)91383-6
  57. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373-377.  https://doi.org/10.1126/science.1241224
  58. Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nature Reviews Neuroscience. 2013;14(4):265-277.  https://doi.org/10.1038/nrn3468
  59. Hoffmann J, Goadsby PJ. Update on intracranial hypertension and hypotension. Current Opinion in Neurology. 2013;26(3):240-247.  https://doi.org/10.1097/wco.0b013e328360eccc
  60. Gaberel T, Gakuba C, Goulay R, et al. Impaired Glymphatic Perfusion After Strokes Revealed by Contrast-Enhanced MRI. Stroke. 2014;45(10):3092-3096. https://doi.org/10.1161/strokeaha.114.006617
  61. Mestre H, Kostrikov S, Mehta RI, Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clinical Science. 2017;131(17):2257-2274. https://doi.org/10.1042/cs20160381
  62. MacLullich AMJ. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. Journal of Neurology. Neurosurgery & Psychiatry. 2004;75(11):1519-1523. https://doi.org/10.1136/jnnp.2003.030858
  63. Tomassoni D, Bramanti V, Amenta F. Expression of aquaporins 1 and 4 in the brain of spontaneously hypertensive rats. Brain Research. 2010;1325:155-163.  https://doi.org/10.1016/j.brainres.2010.02.023
  64. Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: A glymphatic magnetic resonance imaging study. Journal of Cerebral Blood Flow & Metabolism. 2018;0271678X1876097. https://doi.org/10.1177/0271678x18760974
  65. Ren Z, Iliff JJ, Yang L, et al. «Hit & Run» Model of Closed-Skull Traumatic Brain Injury (TBI) Reveals Complex Patterns of Post-Traumatic AQP4 Dysregulation. Journal of Cerebral Blood Flow & Metabolism. 2013;33(6):834-845.  https://doi.org/10.1038/jcbfm.2013.30
  66. Lowe J, Mirra S, Hyman B, Dickson D. Ageing and dementia. Greenfield’s Neuropathology. 2008;2(6)1031-1152.
  67. Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL receptor—related protein-1 at the blood-brain barrier. Journal of Clinical Investigation. 2000;106(12):1489-1499. https://doi.org/10.1172/jci10498
  68. Cirrito JR. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation. 2005;115(11):3285-3290. https://doi.org/10.1172/jci25247
  69. Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiology of disease. 2016; 93:215-225. 
  70. Venkat P, Chopp M, Zacharek A, et al. White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies. Neurobiology of Aging. 2017;50:96-106.  https://doi.org/10.1016/j.neurobiolaging.2016.11.002
  71. Zeppenfeld DM, Simon M, Haswell JD, et al. Association of Perivascular Localization of Aquaporin-4 With Cognition and Alzheimer Disease in Aging Brains. JAMA Neurology. 2017;74(1):91.  https://doi.org/10.1001/jamaneurol.2016.4370
  72. Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185-191.  https://doi.org/10.1038/s41586-018-0368-8
  73. Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature Neuroscience. 2018;21(10):1380-1391.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.