The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Rudenskaya G.E.

Bochkov Research Centre for Medical Genetics

Kadnikova V.A.

Bochkov Research Centre for Medical Genetics

Bessonova L.A.

Bochkov Research Center for Medical Genetics

Sparber P.A.

Bochkov Research Center for Medical Genetics

Kurbatov S.A.

Voronezh Regional Clinical Consultative and Diagnostic Center

Mironovich O.L.

Research Centre for Medical Genetics

Konovalov F.A.

Genomed LLC, Laboratory of Clinical Bioinformatics

Ryzhkova O.P.

Bochkov Research Centre for Medical Genetics

Autosomal dominant spastic paraplegias

Authors:

Rudenskaya G.E., Kadnikova V.A., Bessonova L.A., Sparber P.A., Kurbatov S.A., Mironovich O.L., Konovalov F.A., Ryzhkova O.P.

More about the authors

Read: 4018 times


To cite this article:

Rudenskaya GE, Kadnikova VA, Bessonova LA, et al. . Autosomal dominant spastic paraplegias. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(5):75‑87. (In Russ.)
https://doi.org/10.17116/jnevro202112105175

Recommended articles:
Diagnostic stra­tegies for post-COVID syndrome. Russian Journal of Preventive Medi­cine. 2025;(6):126-130

References:

  1. Boutry M, Morais S, Stevanin G. Update on the genetics of spastic paraplegias. Curr Neurol Neurosci Rep. 2019;19(4):18.  https://doi.org/10.1007/s11910-019-0930-2
  2. Rudenskaya GE, Kadnikova VA, Sidorova OP, et al. Hereditary spastic paraplegia type 4 (SPG4) in Russian families. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;11:11-20. (In Russ.). https://doi.org/10.17116/jnevro201911911111
  3. Rudenskaya GE, Kadnikova VA, Beetz C, et al. Clinical, molecular, and genetic characteristics of the hereditary spastic paraplegia type 3. Annaly klinicheskoj i experimentalnoj nevrologii. 2020;1:44-54. (In Russ.). https://doi.org/10.25692/ACEN.2020.1.5
  4. Rudenskaya GE, Kadnikova VA, Ryzhkova OP, et al. KIF1A-related autosomal dominant spastic paraplegias (SPG30) in Russian families. BMC Neurol. 2020;20(1):290.  https://doi.org/10.1186/s12883-020-01872-4
  5. Akhmetgaleeva AF, Khidiyatova IM, Saifullina EV, et al. Analysis of REEP1 gene in patients with hereditary spastic paraplegia in Bashkortostan. Meditsinskij vestnik Bashkortostana. 2016;4:13-16. (In Russ.).
  6. Kadnikova VA, Rudenskaya GE, Stepanova AA, et al. Mutational spectrum of Spast (Spg4) and Atl1 (Spg3a) genes in Russian patients with hereditary spastic paraplegia. Sci Rep. 2019;9(1):14412. https://doi.org/10.1038/s41598-019-50911-9
  7. Ryzhkova OP, Kardymon OL, Prokhorchuk EB, et al. Guidelines for the interpretation of data on human DNA sequencing obtained by methods of massive parallel sequencing (MPS), (ed. 2018, version 2). Meditsinskaya genetika. 2019;18(8):3-23. (In Russ.). https://doi.org/10.25557/2073-7998.2019.02.3-23
  8. Dong EL, Wang C, Wu S, et al. Clinical spectrum and genetic landscape for hereditary spastic paraplegias in China. Mol Neurodegener. 2018;13(1):36.  https://doi.org/10.1186/s13024-018-0269-1
  9. Fink J, Sharp G, Lange B, et al. Autosomal dominant, familial spastic paraplegia, type I: clinical and genetic analysis of a large North American family. Neurology. 1995;45(2):325-331.  https://doi.org/10.1212/wnl.45.2.325
  10. Fink J, Jones S, Sharp G, et al. Hereditary spastic paraplegia linked to chromosome 15q: analysis of candidate genes. Neurology. 1996;46(3):835-836.  https://doi.org/10.1212/wnl.46.3.835
  11. Rainier S, Chai J, Tokarz D, et al. NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am J Hum Genet. 2003;73(4):967-971.  https://doi.org/10.1086/378817
  12. Human Gene Mutation Database (HGMD) Professional 2020.4 [Internet]. Accessed Mar 15, 2021. https://digitalinsights.qiagen.com/products-overview/clinical-insights-portfolio
  13. Reed J, Wilkinson P, Patel H, et al. A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia. Neurogenetics. 2005;6(2):79-84.  https://doi.org/10.1007/s10048-004-0209-9
  14. Chen S, Song C, Guo H, et al. Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. Hum Mutat. 2005;25(2):135-141.  https://doi.org/10.1002/humu.20126
  15. Bien-Willner R, Sambuughin N, Holley H, et al. Childhood-onset spastic paraplegia with NIPA1 gene mutation. J Child Neurology. 2006;21(11):974-977.  https://doi.org/10.1177/08830738060210111501
  16. Munhoz R, Kawarai T, Teive H, et al. Clinical and genetic study of a Brazilian family with spastic paraplegia (SPG6 locus). Mov Disord. 2006;21(2): 279-281.  https://doi.org/10.1002/mds.20775
  17. Beetz C, Schüle R, Klebe S, et al. Screening of hereditary spastic paraplegia patients for alterations at NIPA1 mutational hotspots. J Neurol Sci. 2008;268(1-2):131-135.  https://doi.org/10.1016/j.jns.2007.11.015
  18. Liu S, Zhao J, Zhuang M, et al. Clinical and genetic study of SPG6 mutation in a Chinese family with hereditary spastic paraplegia. J Neurol Sci. 2008;266(1-2):109-114.  https://doi.org/10.1016/j.jns.2007.09.024
  19. Du J, Hu Y, Tang B, et al. Expansion of the phenotypic spectrum of SPG6 caused by mutation in NIPA1. Clin Neurol Neurosurg. 2011;113(6): 480-482.  https://doi.org/10.1016/j.clineuro.2011.02.011
  20. Svenstrup K, Møller R, Christensen J, et al. NIPA1 mutation in complex hereditary spastic paraplegia with epilepsy. Eur J Neurol. 2011;18(9):1197-1199. https://doi.org/10.1111/j.1468-1331.2011.03359.x
  21. Hedera P. Recurrent de novo c.316G>A mutation in NIPA1 hotspot. J Neurol Sci. 2013;335(1-2):231-232.  https://doi.org/10.1016/j.jns.2013.09.015
  22. Arkadir D, Noreau A, Goldman J, et al. Pure hereditary spastic paraplegia due to a de bovo mutation in the NIPA1 gene. Eur J Neurol. 2014;21(1):e2.  https://doi.org/10.1111/ene.12284
  23. Kaneko S, Kawarai T, Yip E, et al. Novel SPG6 mutation p.A100T in a Japanese family with autosomal dominant form of hereditary spastic paraplegia. Mov Disord. 2006;21(9):1531-1533. https://doi.org/10.1002/mds.21005
  24. Blauw H, van Rheenen W, Koppers M, et al. NIPA1 polyalanine repeat expansions are associated with amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21(11):2497-2502. https://doi.org/10.1093/hmg/dds064
  25. Tazelaar G, Dekker A, van Vugt J, et al. Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiol Aging. 2019;74:234.e9-234.e15.  https://doi.org/10.1016/j.neurobiolaging.2018.09.012
  26. Corrado L, Brunetti M, Di Pierro A, et al. Analysis of the GCG repeat length in NIPA1 gene in C9orf72-mediated ALS in a large Italian ALS cohort. Neurol Sci. 2019;40(12):2537-2540. https://doi.org/10.1007/s10072-019-04001-3
  27. Chen J, Li C, Zhan R, Yin Y. SPG6 supports development of acute myeloid leukemia by regulating BMPR2-Smad-Bcl-2/Bcl-xl signaling. Biochem Biophys Res Commun. 2018;501(1):220-225.  https://doi.org/10.1016/j.bbrc.2018.04.220
  28. Valdmanis P, Meijer I, Reynolds A, et al. Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am J Hum Genet. 2007;80(1):152-161.  https://doi.org/10.1086/510782
  29. Ginanneschi F, D’Amore A, Barghigiani M, et al. SPG8 mutations in Italian families: clinical data and literature review. Neurol Sci. 2020;41(3): 699-703.  https://doi.org/10.1007/s10072-019-04180-z
  30. Chrestian N, Dupre N, Gan-Or Z, et al. Clinical and genetic study of hereditary spastic paraplegia in Canada. Neurol Genet. 2016;3(1):e122. https://doi.org/10.1212/NXG.0000000000000122
  31. Hedera P, Rainier S, Alvarado D, et al. Novel locus for autosomal dominant hereditary spastic paraplegia, on chromosome 8q. Am J Hum Genet. 1999;64(2):563-569.  https://doi.org/10.1086/302258
  32. Rocco P, Vainzof M, Froehner S, et al. Brazilian family with pure autosomal dominant spastic paraplegia maps to 8q: Analysis of muscle beta 1 syntrophin. Am J Med Genet. 2000;92(2):122-127. https://doi.org/10.1002/(sici)1096-8628(20000515)92:2<122::aid-ajmg8>3.0.co;2-b "> 3.0.co;2-b" target="_blank">https://doi.org/10.1002/(sici)1096-8628(20000515)92:2<122::aid-ajmg8>3.0.co;2-b
  33. Bettencourt C, Morris H, Singleton A, et al. Exome sequencing expands the mutational spectrum of SPG8 in a family with spasticity responsive to L-DOPA treatment. J Neurol. 2013;260(9):2414-2416. https://doi.org/10.1007/s00415-013-7044-6
  34. Bogucki P, Sobczyńska-Tomaszewska A. First patient with hereditary spastic paraplegia type 8 in Poland. Clin Case Rep. 2017;5(9):1468-1470. https://doi.org/10.1002/ccr3.1080
  35. Elert-Dobkowska E, Stepniak I, Krysa W, et al. Next-generation sequencing study reveals the broader variant spectrum of hereditary spastic paraplegia and related phenotypes. Neurogenetics. 2019;20(1):27-38.  https://doi.org/10.1007/s10048-019-00565-6
  36. Ishiura H, Takahashi Y, Hayashi T, et al. Molecular epidemiology and clinical spectrum of hereditary spastic paraplegia in the Japanese population based on comprehensive mutational analyses. J Hum Genet. 2014;59(3): 163-172.  https://doi.org/10.1038/jhg.2013.139
  37. Ichinose Y, Koh K, Fukumoto M, et al. Exome sequencing reveals a novel missense mutation in the KIAA0196 gene in a Japanese patient with SPG8. Clin Neurol Neurosurg. 2016;144:36-38.  https://doi.org/10.1016/j.clineuro.2016.02.031
  38. De Bot S, Vermeer S, Buijsman W, et al. Pure adult-onset spastic paraplegia caused by a novel mutation in the KIAA0196 (SPG8) gene. J Neurol. 2013;260(7):1765-1769. https://doi.org/10.1007/s00415-013-6870-x
  39. Van de Warrenburg B, Schouten M, de Bot S, et al. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Europ J Hum Genet. 2016;24(10):1460-1466. https://doi.org/10.1038/ejhg.2016.42
  40. Wang X, Yang Y, Wang X, et al. A novel KIAA0196 (SPG8) mutation in a Chinese family with spastic paraplegia. Chin Med J. 2014;127(10):1987-1989.
  41. Ma L, Shi Y, Chen Z, et al. A novel KIAA0196 mutation in a Chinese patient with spastic paraplegia 8: a case report. Medicine (Baltimore). 2018; 97(20):e10760. https://doi.org/10.1097/MD.0000000000010760
  42. Jahic A, Kreuz F, Zacher P, et al. A novel strumpellin mutation and potential pitfalls in the molecular diagnosis of hereditary spastic paraplegia type SPG8. J Neurol Sci. 2014;347(1-2):372-374.  https://doi.org/10.1016/j.jns.2014.10.018
  43. Meijer IA, Valdmanis PN, Rouleau GA. Spastic Paraplegia 8. 2008 Aug 13 [Updated 2020 May 21]. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews® [Internet]. Seattle (WA); 1993-2021. Accessed Mar 15, 2021. https://www.ncbi.nlm.nih.gov/books/NBK1827
  44. Reid E, Dearlove A, Osborn O, et al. A locus for autosomal dominant ‘pure’ hereditary spastic paraplegia maps to chromosome 19q13. Am J Hum Genet. 2000;66(2):728-732.  https://doi.org/10.1086/302783
  45. Orlacchio A, Kawarai T, Rogaeva E, et al. Clinical and genetic study of a large Italian family linked to SPG12 locus. Neurology. 2002;59(9):1395-1401. https://doi.org/10.1212/01.wnl.0000031423.43482.19
  46. Montenegro G, Rebelo A, Connell J, et al. Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest. 2012;122(2):538-544.  https://doi.org/10.1172/JCI60560
  47. Fowler P, Byrne D, O’Sullivan N. Rare disease models provide insight into inherited forms of neurodegeneration. Rare Dis Res Treat. 2016;1(3):17-21. 
  48. Beetz C, Schüle R, Deconinck T, et al. REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain. 2008;131(Pt 4):1078-1086. https://doi.org/10.1093/brain/awn026
  49. McCorquodale D, Ozomaro U, Huang J, et al. Mutation screening of spastin, atlastin, and REEP1 in hereditary spastic paraplegia. Clin Genet. 2011;79(6):523-530.  https://doi.org/10.1111/j.1399-0004.2010.01501.x
  50. Koh K, Ishiura H, Tsuji S, Takiyama Y. JASPAC: Japan Spastic Paraplegia Research Consortium. Brain Sci. 2018;8(8):153.  https://doi.org/10.3390/brainsci8080153
  51. Hewamadduma C, McDermott C, Kirby J, et al. New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP). Neurogenetics. 2009;10(2):105-110.  https://doi.org/10.1007/s10048-008-0163-z
  52. Schüle R, Wiethoff S, Martus P, et al. Hereditary spastic paraplegia: clinicogenetic lessons from 608 patients. Ann Neurol. 2016;79(4):646-658.  https://doi.org/10.1002/ana.24611
  53. Goizet C, Depienne C, Benard G, et al. REEP1 mutations in SPG31: frequency mutational spectrum, and potential association with mitochondrial morpho-functional dysfunction. Hum Mutat. 2011;32(10):1118-1127. https://doi.org/10.1002/humu.21542
  54. Loureiro JL, Brandão E, Ruano L, et al. Autosomal dominant spastic paraplegias: a review of 89 families resulting from a Portuguese survey. JAMA Neurol. 2013;70(4):481-487.  https://doi.org/10.1001/jamaneurol.2013.1956
  55. Elert-Dobkowska E, Stepniak I, Krysa W, et al. Molecular spectrum of the SPAST, ATL1 and REEP1 gene mutations associated with the most common hereditary spastic paraplegias in a group of Polish patients. J Neurol Sci. 2015;359(1-2):35-39.  https://doi.org/10.1016/j.jns.2015.10.030
  56. Richard S, Lavie J, Banneau G, et al. Hereditary spastic paraplegia due to a novel mutation of the REEP1 gene: case report and literature review. Medicine (Baltimore). 2017;96(3):e5911. https://doi.org/10.1097/MD.0000000000005911
  57. Luo Y, Chen C, Zhan Z, et al. Mutation and clinical characteristics of autosomal-dominant hereditary spastic paraplegias in China. Neurodegener Dis. 2014;14(4):176-183.  https://doi.org/10.1159/000365513
  58. Park H, Kang S, Park S, et al. Mutational spectrum of the SPAST and ATL1 genes in Korean patients with hereditary spastic paraplegia. J Neurol Sci. 2015;357(1-2):167-172.  https://doi.org/10.1016/j.jns.2015.07.024
  59. Zuchner S, Kail M, Nance M, et al. A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics. 2006;7(2): 127-129.  https://doi.org/10.1007/s10048-006-0029-1
  60. Kamada M, Kawarai T, Miyamoto R, et al. Spastic paraplegia type 31: A novel REEP1 splice site donor variant and expansion of the phenotype variability. Parkinsonism Relat Disord. 2018;46:79-83.  https://doi.org/10.1016/j.parkreldis.2017.10.012
  61. Lavie J, Serrat R, Bellance N, et al. Mitochondrial morphology and cellular distribution are altered in SPG31 patients and are linked to DRP1 hyperphosphorylation. Hum Mol Genet. 2015;26(4):674-685.  https://doi.org/10.1093/hmg/ddw425
  62. Erro R, Cordivari C, Bhatia K. SPG31 presenting with orthostatic tremor. Eur J Neurol. 2014;21(4):34-35.  https://doi.org/10.1111/ene.12360
  63. Beetz C, Pieber TR, Hertel N, et al. Exome sequencing identifies a REEP1 mutation involved in distal hereditary motor neuropathy type V. Am J Hum Genet. 2012;91(1):139-145.  https://doi.org/10.1016/j.ajhg.2012.05.007
  64. Schottmann G, Seelow D, Seifert F, et al. Recessive REEP1 mutation is associated with congenital axonal neuropathy and diaphragmatic palsy. Neurol Genet. 2015;1(4):e32.  https://doi.org/10.1212/NXG.0000000000000032
  65. Bock A, Günther S, Mohr J, et al. A nonstop variant in REEP1 causes peripheral neuropathy by unmasking a 3’UTR-encoded, aggregation-inducing motif. Hum Mutat. 2018;39(2):193-196.  https://doi.org/10.1002/humu.23369
  66. Coutelier M, Goizet C, Durr A, et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain. 2015;138(Pt 8):2191-2205. https://doi.org/10.1093/brain/awv143
  67. Panza E, Escamilla-Honrubia J, Marco-Marin C, et al. ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. (Letter). Brain. 2016;139(Pt 1):e3.  https://doi.org/10.1093/brain/awv247
  68. Seri M, Cusano R, Forabosco P, et al. Genetic mapping to 10q23.3-q24.2, in a large Italian pedigree, of a new syndrome showing bilateral cataracts, gastroesophageal reflux, and spastic paraparesis with amyotrophy. Am J Hum Genet. 1999;64(2):586-593.  https://doi.org/10.1086/302241
  69. Slavotinek A, Pike M, Mills K, Hurst J. Cataracts, motor system disorder, short stature, learning difficulties, and skeletal abnormalities: a new syndrome? Am J Med Genet. 1996;62(1):42-47. https://doi.org/10.1002/(SICI)1096-8628(19960301)62:1<42::AID-AJMG9>3.0.CO;2-Y "> 3.0.CO;2-Y" target="_blank">https://doi.org/10.1002/(SICI)1096-8628(19960301)62:1<42::AID-AJMG9>3.0.CO;2-Y
  70. Magini P, Marco-Marin C, Escamilla-Honrubia J, et al. P5CS expression study in a new family with ALDH18A1-associated hereditary spastic paraplegia SPG9. Ann Clin Transl Neurol. 2019;6(8):1533-1540. https://doi.org/10.1002/acn3.50821
  71. Steenhof M, Kibæk M, Larsen M, et al. Compound heterozygous mutations in two different domains of ALDH18A1 do not affect the amino acid levels in a patient with hereditary spastic paraplegia. Neurogenetics. 2018;19(3):145-149.  https://doi.org/10.1007/s10048-018-0547-7
  72. Koh K, Ishiura K, Beppu M, et al. Novel mutations in the ALDH18A1 gene in complicated hereditary spastic paraplegia with cerebellar ataxia and cognitive impairment. J Hum Genet. 2018;63(9):1009-1013. https://doi.org/10.1038/s10038-018-0477-0
  73. Marco-Marín C, Escamilla-Honrubia J, Llácer J, et al. Δ1-Pyrroline-5-carboxylate synthetase deficiency: an emergent multifaceted urea cycle-related disorder. J Inherit Metab Dis. 2020;43(4):657-670.  https://doi.org/10.1002/jimd.12220
  74. Coutelier M, Hammer M, Stevanin G, et al. Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes. JAMA Neurol. 2018;75(5):591-599.  https://doi.org/10.1001/jamaneurol.2017.5121
  75. Orsucci D, Petrucci L, Ienco E, et al. Hereditary spastic paraparesis in adults. A clinical and genetic perspective from Tuscany. Clin Neurol Neurosurg. 2014;120:14-19.  https://doi.org/10.1016/j.clineuro.2014.02.002
  76. Iqbal Z, Rydning S, Wedding I, et al. Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. PLoS One. 2017;12(3):e0174667. https://doi.org/10.1371/journal.pone.0174667
  77. Silver JR. Familial spastic paraplegia with amyotrophy of the hands. Ann Hum Genet. 1966;30(1):69-75.  https://doi.org/10.1111/j.1469-1809.1966.tb00007.x
  78. Windpassinger C, Wagner K, Petek E, et al. Refinement of the ‘Silver syndrome locus’ on chromosome 11q12-q14 in four families and exclusion of eight candidate genes. Hum Genet. 2003;114(1):99-109.  https://doi.org/10.1007/s00439-003-1021-6
  79. Musacchio T, Zaum A, Üçeyler N, et al. ALS and MMN mimics in patients with BSCL2 mutations: the expanding clinical spectrum of SPG17 hereditary spastic paraplegia. J Neurol. 2017;264(1):11-20.  https://doi.org/10.1007/s00415-016-8301-2
  80. Chaudhry R, Kidambi A, Brewer MH, et al. Re-analysis of an original CMTX3 family using exome sequencing identifies a known BSCL2 mutation. Muscle Nerve. 2013;47(6):922-924.  https://doi.org/10.1002/mus.23743
  81. Patel H, Hart P, Warner T, et al. The Silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12-q14, with evidence for genetic heterogeneity within this subtype. Am J Hum Genet. 2001;69(1):209-225.  https://doi.org/10.1086/321267
  82. Warner T, Patel H, Proukakis C, et al. A clinical, genetic and candidate gene study of Silver syndrome, a complicated form of hereditary spastic paraplegia. J Neurol. 2004;251(9):1068-1074. https://doi.org/10.1007/s00415-004-0401-8
  83. Windpassinger C, Auer-Grumbach M, Irobi J, et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nature Genet. 2004;36(3):271-276.  https://doi.org/10.1038/ng1313
  84. Ito D, Suzuki N. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain. 2009;132(Pt 1):8-15.  https://doi.org/10.1093/brain/awn216
  85. Irobi J, Van den Bergh P, Merlini L, et al. The phenotype of motor neuropathies associated with BSCL2 mutations is broader than Silver syndrome and distal HMN type V. Brain. 2004;127(Pt 9):2124-2130. https://doi.org/10.1093/brain/awh232
  86. Cho H, Sung D, Ki C. Identification of de novo BSCL2 Ser90Leu mutation in a Korean family with Silver syndrome and distal hereditary motor neuropathy. Muscle Nerve. 2007;36(3):384-386.  https://doi.org/10.1002/mus.20792
  87. Rohkamm B, Reilly M, Lochmuller H, et al. Further evidence for genetic heterogeneity of distal HMN type V. CMT2 with predominant hand involvement and Silver syndrome. J Neurol Sci. 2007;263(1-2):100-106.  https://doi.org/10.1016/j.jns.2007.06.047
  88. Dierick I, Baets J, Irobi J, et al. Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies: a genotype-phenotype correlation study. Brain. 2008;131(Pt 5):1217-1227. https://doi.org/10.1093/brain/awn029
  89. Rakocevic-Stojanovic V, Milic-Rasic V, Peric S, et al. N88S mutation in the BSCL2 gene in a Serbian family with distal hereditary motor neuropathy type V or Silver syndrome. J Neurol Sci. 2008;296(1-2):107-109.  https://doi.org/10.1016/j.jns.2010.06.015
  90. Luigetti M, Fabrizi G, Madia F, et al. Seipin S90L mutation in an Italian family with CMT2/dHMN and pyramidal signs. Muscle Nerve. 2010; 42(3):448-451.  https://doi.org/10.1002/mus.21734
  91. Cen Z, Lu X, Wang Z, et al. BSCL2 S90L mutation in a Chinese family with Silver syndrome with a review of the literature. J Clin Neurosci. 2015;22(2):429-430.  https://doi.org/10.1016/j.jocn.2014.08.010
  92. Ollivier Y, Magot A, Latour P, et al. Clinical and electrophysiological features in a French family presenting with seipinopathy. Neuromusc Disord. 2015;25(2):161-164.  https://doi.org/10.1016/j.nmd.2014.10.006
  93. Hsiao C, Tsai P, Lin C, et al. Clinical and molecular characterization of BSCL2 mutations in a Taiwanese cohort with hereditary neuropathy. PLoS One 2016;11(1):e0147677. https://doi.org/10.1371/journal.pone.0147677
  94. Li T, Lyu X, Xiao H, et al. Genetic analysis of a pedigree affected with distal hereditary motor neuronopathy V. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36(3):207-211.  https://doi.org/10.3760/cma.j.issn.1003-9406.2019.03.004
  95. Mohsenpour N, Roknizadeh H, Maghbooli M, et al. Whole exome sequencing revealed a novel GJB1 pathogenic variant and a rare BSCL2 mutation in two Iranian large pedigrees with multiple affected cases of Charcot-Marie-Tooth. Int J Mol Cell Med. 2019;8(3):169-178.  https://doi.org/10.22088/IJMCM.BUMS.8.3.169
  96. Ishihara S, Okamoto Y, Tanabe H, et al. Clinical features of inherited neuropathy with BSCL2 mutations in Japan. J Peripher Nerv Syst. 2020; 25(2):125-131.  https://doi.org/10.1111/jns.12369
  97. Van Gent E, Hoogland R, Jennekens F. Distal amyotrophy of predominantly the upper limbs with pyramidal features in a large kinship. J Neurol Neurosurg Psychiat. 1985;48(3):266-269.  https://doi.org/10.1136/jnnp.48.3.266
  98. De Visser M, de Visser B, Verjaal M. Amyotrophy of the hands and pyramidal features of predominantly the legs segregating within one large family. J Neurol Sci. 1988;88(1-3):241-246.  https://doi.org/10.1016/0022-510x(88)90221-3
  99. Van de Warrenburg B, Scheffer H, van Eijk J, et al. BSCL2 mutations in two Dutch families with overlapping Silver syndrome-distal hereditary motor neuropathy. Neuromuscul Disord. 2006;16(2):122-125.  https://doi.org/10.1016/j.nmd.2005.11.003

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.