The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Krivolapova D.A.

Krasnov Research Institute of Eye Diseases

Andreev A.Yu.

Krasnov Research Institute of Eye Diseases

Osidak E.O.

Dmitry Rogachev National Medical Research Center Of Pediatric Hematology, Oncology and Immunology

Budnikova E.A.

Krasnov Research Institute of Eye Diseases

Methods of surgical reconstruction of the conjunctiva

Authors:

Krivolapova D.A., Andreev A.Yu., Osidak E.O., Budnikova E.A.

More about the authors

Journal: Russian Annals of Ophthalmology. 2023;139(6): 136‑143

Read: 1811 times


To cite this article:

Krivolapova DA, Andreev AYu, Osidak EO, Budnikova EA. Methods of surgical reconstruction of the conjunctiva. Russian Annals of Ophthalmology. 2023;139(6):136‑143. (In Russ.)
https://doi.org/10.17116/oftalma2023139061136

Recommended articles:
Repeated breast reco­nstruction after previous complications. Piro­gov Russian Journal of Surgery. 2025;(6):51-57

References:

  1. Paulsen F. Functional anatomy and immunological interactions of ocular surface and adnexa. Dev Ophthalmol. 2008;41:21-35.  https://doi.org/10.1159/000131068
  2. Hatton MP, Rubin PA. Conjunctival regeneration. Adv Biochem Eng Biotechnol. 2005;94:125-40.  https://doi.org/10.1007/b100002
  3. Chan F, Benson MD, Plemel DJA, Mahmood MN, Chan SM. A diagnosis of Stevens-Johnson Syndrome (SJS) in a patient presenting with superficial keratitis. Am J Ophthalmol Case Rep. 2018;11:167-169.  https://doi.org/10.1016/j.ajoc.2018.06.004
  4. Makuloluwa AK, Hamill KJ, Rauz S, et al. Biological tissues and components, and synthetic substrates for conjunctival cell transplantation. Ocul Surf. 2021;22:15-26.  https://doi.org/10.1016/j.jtos.2021.06.003
  5. Schrader S, Notara M, Beaconsfield M, Tuft SJ, Daniels JT, Geerling G. Tissue engineering for conjunctival reconstruction: established methods and future outlooks. Curr Eye Res. 2009;34(11):913-924.  https://doi.org/10.3109/02713680903198045
  6. Zhou H, Lu Q, Guo Q, Chae J, Fan X, Elisseeff JH, Grant MP. Vitrified collagen-based conjunctival equivalent for ocular surface reconstruction. Biomaterials. 2014;35(26):7398-7406. https://doi.org/10.1016/j.biomaterials.2014.05.024
  7. Lu Q, Al-Sheikh O, Elisseeff JH, Grant MP. Biomaterials and Tissue Engineering Strategies for Conjunctival Reconstruction and Dry Eye Treatment. Middle East Afr J Ophthalmol. 2015;22(4):428-434.  https://doi.org/10.4103/0974-9233.167818
  8. Chen LB, Zhang SY, Yan CX, Yao QK, Shao CY, Fu Y. Evaluation of chronic ocular sequelae in patients with symblepharon caused by ocular burns. Int J Ophthalmol. 2020;13(7):1066-1073. https://doi.org/10.18240/ijo.2020.07.08
  9. Feng J, Liu Y, Ren Y, Shi W, Kang H, Tan Y, Wu R, Zhang G, He Y. Evaluation of Dry Eye Severity and Ocular Surface Inflammation in Patients with Pemphigus and Pemphigoid. Ocul Immunol Inflamm. 2023:1-9.  https://doi.org/10.1080/09273948.2022.2154680
  10. Wang T, Shan F, Zhou Q, Shi W, Xie L. Allogeneic Cultivated Limbal Epithelial Sheet Transplantation in Reconstruction of Conjunctival Sac After Chemical and Thermal Burns. Front Med (Lausanne). 2021;8:697264. https://doi.org/10.3389/fmed.2021.697264
  11. Barraquer J. Corneal autografting. In: King JH, McTigue JW. The Cornea World Congress. Washington, Butterworth; 1965;627. 
  12. Kenyon KR, Wagoner MD, Hettinger ME. Conjunctival autograft transplantation for advanced and recurrent pterygium. Ophthalmology. 1985;92(11): 1461-1470. https://doi.org/10.1016/s0161-6420(85)33831-9
  13. Fonseca EC, Rocha EM, Arruda GV. Comparison among adjuvant treatments for primary pterygium: a network meta-analysis. Br J Ophthalmol. 2018;102(6):748-756.  https://doi.org/10.1136/bjophthalmol-2017-310288
  14. Hosni FA. Repair of trachomatous cicatricial entropion using mucous membrane graft. Arch Ophthalmol. 1974;91(1):49-51.  https://doi.org/10.1001/archopht.1974.03900060053013
  15. Mai C, Bertelmann E. Oral mucosal grafts: old technique in new light. Ophthalmic Res. 2013;50(2):91-98.  https://doi.org/10.1159/000351631
  16. Murube J. Labial salivary gland transplantation in severe dry eye. Oculoplast Orbital Reconstr Surg. 1998;1:104-110. 
  17. Gushchina MB, Tereshchenko AV, Gushchin AV, Afanasyeva DS. Surgical repair of conjunctival defects: perspectives and limitations. Russian Journal of Clinical Ophthalmology = Klinicheskaya oftal’mologiya. 2022;22(2):137-144. (In Russ.). https://doi.org/10.32364/2311-7729-2022-22-2-137-144
  18. Kuckelkorn R, Schrage N, Redbrake C, Kottek A, Reim M. Autologous transplantation of nasal mucosa after severe chemical and thermal eye burns. Acta Ophthalmol Scand. 1996;74(5):442-448.  https://doi.org/10.1111/j.1600-0420.1996.tb00596.x
  19. Wenkel H, Rummelt V, Naumann GO. Long term results after autologous nasal mucosal transplantation in severe mucus deficiency syndromes. Br J Ophthalmol. 2000;84(3):279-284.  https://doi.org/10.1136/bjo.84.3.279
  20. Kim JC, Tseng SC. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea. 1995; 14(5):473-484. 
  21. Jie J, Yang J, He H, et al. Tissue remodeling after ocular surface reconstruction with denuded amniotic membrane. Sci Rep. 2018;8(1):6400. Published 2018 Apr 23.  https://doi.org/10.1038/s41598-018-24694-4
  22. Riau AK, Beuerman RW, Lim LS, Mehta JS. Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials. 2010;31(2):216-225.  https://doi.org/10.1016/j.biomaterials.2009.09.034
  23. Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl KP. Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int. 2011;108(14): 243-248.  https://doi.org/10.3238/arztebl.2011.0243
  24. Palamar M, Yaman B, Akalın T, Yağcı A. Amniotic Membrane Transplantation in Surgical Treatment of Conjunctival Melanoma: Long-term Results. Turk J Ophthalmol. 2018;48(1):15-18.  https://doi.org/10.4274/tjo.62681
  25. Dua HS, Maharajan VS, Hopkinson A. Controversies and Limitations of Amniotic Membrane in Ophthalmic Surgery. In: Reinhard T, Larkin D (eds). Cornea and External Eye Disease. Essentials in Ophthalmology. Berlin, Heidelberg: Springer; 2006;21-33.  https://doi.org/10.1007/3-540-31226-9_2
  26. Clearfield E, Hawkins BS, Kuo IC. Conjunctival Autograft Versus Amniotic Membrane Transplantation for Treatment of Pterygium: Findings From a Cochrane Systematic Review. Am J Ophthalmol. 2017;182:8-17.  https://doi.org/10.1016/j.ajo.2017.07.004
  27. Barabino S, Rolando M, Bentivoglio G, et al. Role of amniotic membrane transplantation for conjunctival reconstruction in ocular-cicatricial pemphigoid. Ophthalmology. 2003;110(3):474-480.  https://doi.org/10.1016/S0161-6420(02)01892-4
  28. Prabhasawat P, Tseng SC. Impression cytology study of epithelial phenotype of ocular surface reconstructed by preserved human amniotic membrane. Arch Ophthalmol. 1997;115(11):1360-1367. https://doi.org/10.1001/archopht.1997.01100160530001
  29. Meller D, Dabul V, Tseng SC. Expansion of conjunctival epithelial progenitor cells on amniotic membrane. Exp Eye Res. 2002;74(4):537-545.  https://doi.org/10.1006/exer.2001.1163
  30. Drechsler CC, Kunze A, Kureshi A, Grobe G, Reichl S, Geerling G, Daniels JT, Schrader S. Development of a conjunctival tissue substitute on the basis of plastic compressed collagen. J Tissue Eng Regen Med. 2017;11(3): 896-904.  https://doi.org/10.1002/term.1991
  31. Martínez-Osorio H, Calonge M, Corell A, et al. Characterization and short-term culture of cells recovered from human conjunctival epithelium by minimally invasive means. Mol Vis. 2009;15:2185-2195.
  32. Inatomi T, Nakamura T, Kojyo M, Koizumi N, Sotozono C, Kinoshita S. Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. Am J Ophthalmol. 2006;142(5):757-764.  https://doi.org/10.1016/j.ajo.2006.06.004
  33. Prabhasawat P, Ekpo P, Uiprasertkul M, et al. Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease. Cell Tissue Bank. 2016;17(3):491-503.  https://doi.org/10.1007/s10561-016-9575-4
  34. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 2002;13(5):377-383.  https://doi.org/10.1016/s1084952102000940
  35. Srimurugan B, Nainar M, Ramanan S, Ramesh B, Cherian KM. Use of Indigenous Decellularized Valved Xenograft Conduit for Double-Barrel Right Ventricular Outflow Tract Reconstruction: Nine-Year Follow-Up. World J Pediatr Congenit Heart Surg. 2016;7(4):520-522.  https://doi.org/10.1177/2150135115613745
  36. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377(9772):1175-1182. https://doi.org/10.1016/S0140-6736(10)62354-9
  37. Hoshiba T, Lu H, Kawazoe N, Chen G. Decellularized matrices for tissue engineering. Expert Opin Biol Ther. 2010;10(12):1717-1728. https://doi.org/10.1517/14712598.2010.534079
  38. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polymer Sci. 2011;2011:1-19.  https://doi.org/10.1155/2011/290602
  39. Witt J, Mertsch S, Borrelli M, et al. Decellularised conjunctiva for ocular surface reconstruction. Acta Biomater. 2018;67:259-269.  https://doi.org/10.1016/j.actbio.2017.11.054
  40. Zhao L, Jia Y, Zhao C, et al. Ocular surface repair using decellularized porcine conjunctiva. Acta Biomater. 2020;101:344-356.  https://doi.org/10.1016/j.actbio.2019.11.006
  41. Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed. 2008;19(5):635-652.  https://doi.org/10.1163/156856208784089599
  42. Bosworth LA, Doherty KG, Hsuan JD, Cray SP, D’Sa RA, Pineda Molina C, Badylak SF, Williams RL. Material Characterisation and Stratification of Conjunctival Epithelial Cells on Electrospun Poly(ε-Caprolactone) Fibres Loaded with Decellularised Tissue Matrices. Pharmaceutics. 2021; 13(3):318.  https://doi.org/10.3390/pharmaceutics13030318
  43. Borrelli M, Joepen N, Reichl S, et al. Keratin films for ocular surface reconstruction: evaluation of biocompatibility in an in-vivo model. Biomaterials. 2015;42:112-120.  https://doi.org/10.1016/j.biomaterials.2014.11.038
  44. Pritchard EM, Dennis PB, Omenetto F, Naik RR, Kaplan DL. Review physical and chemical aspects of stabilization of compounds in silk. Biopolymers. 2012;97(6):479-498.  https://doi.org/10.1002/bip.22026
  45. He M, Storr-Paulsen T, Wang AL, et al. Artificial Polymeric Scaffolds as Extracellular Matrix Substitutes for Autologous Conjunctival Goblet Cell Expansion. Invest Ophthalmol Vis Sci. 2016;57(14):6134-6146. https://doi.org/10.1167/iovs.16-20081
  46. Long K, Liu Y, Li W, et al. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering. J Biomed Mater Res A. 2015;103(3):1159-1168. https://doi.org/10.1002/jbm.a.35268
  47. Tsai RJ, Tseng SC. Substrate modulation of cultured rabbit conjunctival epithelial cell differentiation and morphology. Invest Ophthalmol Vis Sci. 1988; 29(10):1565-1576.
  48. Brown R, Wiseman M, Chuo CB, Cheema U, Nazhat S. Ultrarapid Engineering of Biomimetic Materials and Tissues: Fabrication of Nano- and Microstructures by Plastic Compression. Adv Funct Mater 2005;15(11):1762-1770. https://doi.org/10.1002/adfm.200500042
  49. Witt J, Borrelli M, Mertsch S, Geerling G, Spaniol K, Schrader S. Evaluation of Plastic-Compressed Collagen for Conjunctival Repair in a Rabbit Model. Tissue Eng Part A. 2019;25(15-16):1084-1095. https://doi.org/10.1089/ten.TEA.2018.0190
  50. Takezawa T, Ozaki K, Nitani A, Takabayashi C, Shimo-Oka T. Collagen vitrigel: a novel scaffold that can facilitate a three-dimensional culture for reconstructing organoids. Cell Transplant. 2004;13(4):463-473.  https://doi.org/10.3727/000000004783983882
  51. Calderón-Colón X, Xia Z, Breidenich JL, et al. Structure and properties of collagen vitrigel membranes for ocular repair and regeneration applications. Biomaterials. 2012;33(33):8286-8295. https://doi.org/10.1016/j.biomaterials.2012.07.062
  52. Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog Polym Sci. 2011;36(9):1254-1276. https://doi.org/10.1016/j.progpolymsci.2011.05.003
  53. Spaniol K, Holtmann C, Geerling G, Schrader S. Neue Ansätze zur Rekonstruktion der Augenoberfläche jenseits der Hornhaut [New approaches to ocular surface reconstruction beyond the cornea]. Ophthalmologe. 2017; 114(4):307-317. (In Germ.). https://doi.org/10.1007/s00347-016-0419-1
  54. Elmowafy EM, Tiboni M, Soliman ME. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig. 2019;49:347-380.  https://doi.org/10.1007/s40005-019-00439-x
  55. Hong S, Yun JH, Kim ES, Kim JS, Tchah H, Hwang C. Human Conjunctival Epithelial Sheets Grown on Poly(Lactic-Co-Glycolic) Acid Membranes and Cocultured With Human Tenon’s Fibroblasts for Corneal Repair. Invest Ophthalmol Vis Sci. 2018;59(3):1475-1485. https://doi.org/10.1167/iovs.17-22719
  56. Ang LP, Cheng ZY, Beuerman RW, Teoh SH, Zhu X, Tan DT. The development of a serum-free derived bioengineered conjunctival epithelial equivalent using an ultrathin poly(epsilon-caprolactone) membrane substrate. Invest Ophthalmol Vis Sci. 2006;47(1):105-112.  https://doi.org/10.1167/iovs.05-0512
  57. Miller K, Hsu JE, Soslowsky LJ. Materials in Tendon and Ligament Repair. Comprehens Biomater. 2011;257-279.  https://doi.org/10.1016/b978-0-08-055294-1.00218-x
  58. Shin YJ, Lee HI, Kim MK, et al. Biocompatibility of nanocomposites used for artificial conjunctiva: in vivo experiments. Curr Eye Res. 2007;32(1):1-10.  https://doi.org/10.1080/02713680601077061
  59. Yao Q, Hu Y, Yu F, Zhang W, Fu Y. A novel application of electrospun silk fibroin/poly(l-lactic acid-co-ε-caprolactone) scaffolds for conjunctiva reconstruction. RSC Adv. 2018;8(33):18372-18380. https://doi.org/10.1039/c7ra13551c

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.